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Abstract—Functional testing of applications that process the information stored in databases often requires a careful design of the test 

database. The larger the test database, the more difficult it is to develop and maintain tests as well as to load and reset the test data. This 

paper presents an approach to reduce a database with respect to a set of SQL queries and a coverage criterion. The reduction procedures 

search the rows in the initial database that contribute to the coverage in order to find a representative subset that satisfies the same 

coverage as the initial database. The approach is automated and efficiently executed against large databases and complex queries. The 

evaluation is carried out over two real life applications and a well-known database benchmark. The results show a very large degree of 

reduction as well as scalability in relation to the size of the initial database and the time needed to perform the reduction. 

Index Terms—Test database reduction, Test coverage of code, Test design, Testing tools 

——————————      —————————— 

1 INTRODUCTION 

ATABASE applications involve the management of large 
amounts of data stored and organized in many tables. 
These data are usually managed using a third party com-

ponent called the Database Management System (DBMS) that 
provides high performance and a high degree of scalability and 
dependability. The application is able to access the stored data 
using some kind of query language. Despite the continuous de-
velopments in new technologies such as NoSQL databases [1] 
and persistence systems, applications handling the data using 
Relational DBMS and the Structured Query language (SQL) [2] 
are ubiquitous in virtually all industrial and business sectors. 

Testing software applications involves a crucial activity that 
consists of elaborating test cases, each having sets of test case 
preconditions, inputs and expected outputs [3]. The tester has to 
provide enough meaningful inputs in order to exercise the ap-
plication code as much as possible. If the application involves a 
database, the elaboration of test databases is a determining fac-
tor. On some occasions, the test database may be by far the most 
important component of the input (such as reports, analytical 
queries or dashboards). 

Creating a test database involves a number of technical and 
practical challenges. The test database should contain enough 
meaningful data to adequately exercise the application under 
test. However, populating the test database becomes a difficult 
task because of the highly interrelated nature of tables. Test da-
tabases should be kept small in order to facilitate: 1) the effi-
ciency of the reset of the test database, 2) the fault localization 
and debugging of failed tests, 3) the test output evaluation when 
a test produces many outputs from the database, and 4) the 
maintenance and extensibility of test scripts.  

Consider, for example, the following scenario: A database 
contains orders made by clients. Each order has the information 
about the client and the warehouse that will supply the goods. 
This information is stored in a main table (order) with the order 
ID (oid), client ID (cid), warehouse ID (wid) and the order status. 

The warehouse table includes its ID (wid) and its name. A new 
reporting module is under development and one of the reports 
consists in displaying all cancelled orders (status=’C’) and the 
warehouse name. The developer creates the report based on the 
following query: 

SELECT o.oid, o.status, c.cid, w.name  
FROM order o, warehouse w  
WHERE o.wid=w.wid AND o.status=’C’ 

The test requirements for this report include creating test da-
tabases with orders with status ‘C’ and other different statuses. 
In addition, as the warehouse is assigned after entering an order, 
there must be orders in the test database that have been can-
celled before and after the assignment of a warehouse. 

Creating test databases needs a trade-off between the quality 
of the data from the testing point of view and practical issues 
related to populating and loading the test database. The tester 
may adopt different strategies that range from 1) beginning 
from a previously populated database (e.g. a copy of the pro-
duction database) to 2) beginning from an empty database. 

If testing is done using a production database, the actual re-
sults have to be checked over many rows in the report to ensure 
they meet the specification. In particular it should be checked 
that all reported rows are included and there are no omitted 
rows. In this case the query is wrong as it ignores cancelled or-
ders that do not have a warehouse assigned yet. The source of 
the fault in the query is that the join between tables should be a 
left join. It should be written as: 

SELECT o.oid, o.status, c.cid, w.name FROM order o  
LEFT JOIN warehouse w ON o.wid=w.wid  
WHERE o.status=’C’ 

Moreover, if the test is further automated, its execution will 
require a reset of the database to isolate this test from others that 
modify the database, which is more time consuming as the size 
of the database grows. 

The second strategy is to start from an empty database. The 
tester is free to create a script to populate a test database con-
taining only the rows that fulfill the test requirements. The com-
parison of the actual results is easier as fewer rows at the output 
have to be checked and the reset of the database is faster. How-
ever, the tester has to specify each row and its values (including 
all columns in the tables involved, which are simplified in the 
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example) and to populate additional tables to ensure referential 
integrity. 

An intermediate strategy that constitutes a trade-off between 
the above would consist of extracting a subset of the data that 
fulfills the test requirements from the production database and 
generating a script to populate the test database with this subset. 
This is a reduction of the production database. If it is made au-
tomatically, this would facilitate the testing as it contains few, 
but meaningful data (that cover the test requirements of the 
query). It would be easier to check the actual results (they con-
tain fewer rows) and easier to populate and load the test data-
base (the script would be automatically created). 

The scope of this paper relates to this intermediate strategy: 
Given a database, produce a smaller database containing mean-
ingful data to enable its use as a test database. To accomplish 
this, 1) we start from an initial database (that can be taken from 
a production database after obfuscating confidential data) and a 
set of queries that have been issued to the database (which can 
be taken from the execution log registered by the DBMS). 2) In 
order to be able to select meaningful test data from the initial 
database we use a test criterion called SQL Full Predicate Cov-
erage (SQLFpc) [4] which is a variant of Modified Condi-
tion/Decision Coverage (MCDC) [5], [6] specifically tailored for 
SQL. Given a SQL query and a test database, the SQLFpc crite-
rion defines a set of test requirements, each represented as a cov-
erage rule (written as a SQL expression). The execution of the 
rules against the initial database determines whether the test re-
quirements for the query are met. 3) Then the data which satisfy 
each coverage rule are retrieved, reduced to a subset and in-
serted into another database (initially empty) which constitutes 
the reduced test database. 

While our prior work on test database reduction [7] deals 
with tool support for a very limited kind of queries, this work 
largely expands the applicability of the approach to more com-
plex queries and provides a thorough assessment of the results.  

The specific contributions of this work include: 
1. The definition of a set of reduction rules and reduction pro-

cedures which allow a) to determine the tables and rows 
from the initial database that satisfy each test require-
ment (represented by coverage rules), and b) to select a 
small set of  them in order to guarantee that test require-
ments are also met in the reduced database. The reduc-
tion procedures perform a search on the initial database 
to select a subset based on cost and fitness functions. 

2. The approach is able to handle a large set of SQL syntax, 
including the main clauses (SELECT, JOIN, WHERE, 
GROUP BY, HAVING) as well as subqueries and views. 

3. Several optimization strategies allow decreasing the total 
time needed to reduce the database by parallelizing dif-
ferent tasks and reducing the number of rows that need 
to be retrieved from the database. 

4. The reduction preserves the coverage in most cases, the fi-
nal size of the reduced test database is generally inde-
pendent from the size of the initial database and the ap-
proach is scalable. This has been checked in three case 
studies (two of them are taken from real-life applications 
and the third from a synthetic benchmark). 

The remainder of the paper is structured as follows: Section 2 
provides background and related work on test reduction, rela-
tional models, database testing as well as the basic notation and 

the concept of coverage. Section 3 formulates the database re-
duction problem. Section 4 presents how to elaborate the reduc-
tion rules and procedures for different types of queries and Sec-
tion 5 deals with optimization issues. Section 6 evaluates the ap-
proach and Section 7 discusses the main results. Finally, Section 
8 concludes. 

2 BACKGROUND AND RELATED WORK 

2.1 Test Suite Reduction 

A number of different approaches have been studied in the past 
in the field of regression testing to maximize the value of a given 
test suite: minimization, selection and prioritization [8]. 1) Test 
suite minimization seeks to eliminate redundant test cases in or-
der to reduce the number of tests to run, 2) Test case selection 
seeks to identify the test cases that are relevant to some set of 
recent changes, and 3) Test case prioritization seeks to order test 
cases in such a way that early fault detection is maximized. 

Test suite minimization is often called test suite reduction. 
Rothermel et al. [9] formulate the problem as follows: 

Given: Test suite T, a set of test-case requirements r1, r2, ... , rn 
that must be satisfied to provide the desired test coverage of the 
program, and subsets of T, T1, T2, ... ,Tn, one associated with each 
of the ri’s such that any one of the test cases tj belonging to Ti can 
be used to test ri . 

Problem: Find a representative set of test cases from T that sat-
isfies all ri’s. 

Many algorithms and empirical studies related to the above 
test regression problems have been published during the last 
few decades, as well as some comprehensive reviews [8], [10]. 
One of the most important concerns on test suite reduction is 
whether a minimized test suite preserves the fault detection abil-
ity that the original test suite had. In this sense the empirical 
studies have not been conclusive. Wong et al. reported a de-
crease in fault detection ability of 1.45% in the worst case using 
10 Unix programs [11] and 7.28% using a larger real-life pro-
gram (space) [12]. However other studies found different fig-
ures. Rothermel et al. found a decrease in fault detection ability 
of over 50% [13] using the Siemens Suite. Using the space pro-
gram they found 8.9% [14]. If the test suites are randomly gen-
erated the decrease is larger (18.1%). These figures depend on a 
great number of factors such as the programs themselves, how 
the test cases and test suites have been obtained and the kind of 
faults that are considered [8]. 

In this paper we deal with a similar problem to the test suite 
minimization, but, instead of obtaining a reduced test suite, we 
seek to obtain a reduced test database. 

2.2 The Relational Model 

The relational model was first developed by Codd [15] and de-
fines the foundations of data storage and querying that is imple-
mented in today’s commercial relational database management 
systems. The notation used in this paper is that presented by the 
author in the second version of the relational model [16], re-
ferred to as RM/V2, with some adaptations needed for subse-
quent sections. 

Relations and attributes: Given a set A of attributes A1, …, Am,  
a relation  R is a subset of the Cartesian product of their domains, 
denoted as R(A1, ... Am) or simply R(A) or R. In other words, a 
relation R(A) is a set of tuples of the attributes in A. In SQL a 
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relation is a table or view, attributes are columns and tuples are 
rows. For each relation one or more attributes are primary keys 
which uniquely identify each tuple in this relation. The domain 
of attributes includes special marks to reference missing or in-
applicable attributes which are indicated as NULL in commer-
cial relational DBMS. This leads to a three-valued logic of pred-
icates. 

The basic operations in the RM/V2 transform either a single 
relation or a pair of relations into another relation. Operators are 
defined using relational assignments: A relational assignment is 
in the form Zrve where rve denotes a relation-valued expression 
(RVE) and Z is the name of the relation obtained when applying 
the relation-valued expression. In SQL an RVE is called a query. 
The basic relational operators are shown below: 

Selection: Select operator Z  R[p(A)] generates as a result a 
relation Z which contains the complete tuples from relation R 
that fulfill the predicate p on attributes A. Its SQL expression is: 

SELECT * FROM R WHERE p(A) 
Projection: Project operator Z  R (A’) generates a relation Z 

which contains only the subset of attributes specified in A’A. 
Its SQL expression is: 

SELECT A’ FROM R 
Joins: The join operator Z  R[p(A,B)]S generates a relation 

that contains tuples of R(A) concatenated with tuples of S(B), but 
only where the condition specified by predicate p(A,B) is found 
to hold true. The predicate p is named join predicate. Its SQL ex-
pression is: 

SELECT * FROM R INNER JOIN S ON p(A,B) 
The above is also called inner join. When the outer increment 
(tuples from a relation that do not fulfill the join predicate) is 
added to the resulting relation, the join is called outer join. De-
pending on the relation that is considered in the outer increment 
(R, S or both) the join is called left outer, right outer or full outer 
join, respectively. These joins will be denoted as R[p(A,B)]JTS, 
where JT is a label {L, R, F} that denotes the join-type. 

Framing: The framing operator Z  R /// G partitions a rela-
tion into a collection of subrelations (groups), such that each of 
them has equal values for a set of attributes G named grouping 
attributes. The most commonly used is in the form Z  R /// G 
(G,F) which performs aggregated calculations over all tuples on 
each frame. These calculations are performed by aggregate func-
tions (denoted by F). Its SQL expression is: 

SELECT G,F FROM R GROUP BY G 
A further select operator may be applied after framing:  Z  R 
/// G [q(G,F)] (G,F). Predicate q(G,F) involves grouping attributes 
and aggregate functions over A. It is called frame predicate, which 
is represented in SQL by the HAVING clause: 

SELECT G,F FROM R GROUP BY G HAVING q(G,F) 

2.3 Test Coverage for Database Applications 

Test coverage criteria for database applications include fault-
based and flow/logic-based. In the fault-based category the ex-
isting works range from the development of sets of mutants for 
SQL queries [17], [18] or schemas [19], [20], [21] to the evaluation 
of the fault-detection effectiveness with tools [22], [23], [24], [25], 
fault-localization [26] and empirical studies [27]. Others are ap-
plication specific, mainly with the goal of detecting SQL injec-
tion vulnerabilities [28], [29], [30] and preventing them [31]. 

In the flow/logic-based category some criteria are based on 
data-flow [32], [33] as well as tools to automate the approach 

[34]. These criteria have also been used in the context of active 
databases [35]. Logic-based criteria incorporate a notion of mul-
tiple condition coverage [36], [37], define a hierarchy of criteria 
to test schema constraints [38] or focus on how the SQL strings 
containing the query to be executed are constructed by the pro-
gram [39]. The SQLFpc criterion [4] mentioned in the introduc-
tion belongs to this category. As this paper will make use of this 
criterion the rest of this subsection provides a brief summary. 

MCDC [5], [6] is a coverage criterion that specifies test re-
quirements consisting in that every condition in a logical deci-
sion has taken all possible outcomes at least once, and each con-
dition has been shown to independently affect the decision’s 
outcome. It is also called Active Clause Coverage [40][41]. Based 
on this principle, SQLFpc provides a criterion tailored for the 
specific features of SQL, where the test inputs are the database 
and the programs are SQL queries. In addition to conditions in 
WHERE and HAVING clauses, the SQLFpc criterion deals with 
the way in which SQL queries perform the joins, groupings and 
aggregations, as well as the handling of the three-valued logic. 

Given a SQL query, SQLFpc specifies a number of test re-
quirements that impose a set of constraints on the test database 
in order to achieve the coverage, which are called coverage rules 
(). Coverage rules are obtained by applying coverage rule trans-
formations () to the query [4] and are expressed as SQL queries. 
The evaluation of SQLFpc coverage against a previously popu-
lated database is obtained by executing each rule (query) against 
the database. If the output is not empty (it obtains at least one 
row), it means that the test requirement embodied in the rule is 
fulfilled. The approach for reduction presented in this paper will 
take these outputs and will try to obtain a subset of rows from 
the initial database that produces a non empty output. 

2.4 Testing Database Applications 

Most of the previous work on testing database applications fo-
cuses on generating either the sets of test inputs or the test data-
base. The AGENDA tool [42], [43], [44], [45] is loosely related to 
the category-partition method and uses heuristics to fill the test 
database. Different criteria may be used to populate the data-
bases. Some of them may take the form of intensional specifica-
tion by specifying constraints in a SQL-like language [46], [47] 
or be based on reverse query processing [48] which uses the de-
sired output as extensional specifications to generate the inputs 
or SQL rules in the form of intensional specifications [49]. 

Other approaches directed towards test data generation use 
different kinds of constraint solvers to either generate test inputs 
or populate the test database. With the goal to test SQL queries, 
some works address the test database generation by imposing 
constraints on the database statements using different test crite-
ria, such as predicate coverage [50], [51], [52], mutation coverage 
[53], [54] or the SQLFpc criterion [55]. Constraint-based ap-
proaches are also explored to test database programs. These ap-
proaches track symbolic constraints from the procedural code 
and the embedded SQL queries and then use these constraints 
in conjunction with a constraint solver to generate program in-
puts [56], [57] or both program inputs and test databases [58], 
[59], [60]. Search based techniques have also been used to gen-
erate test databases considering schema constraints [61]. 

Although most of the existing work deals with the generation 
of test cases, other issues such as debugging and regression test-
ing have also been handled. These include the reproduction of 
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problems [62][63], removing redundant tests [64], obtaining the 
execution order of a given test suite in order to reduce the num-
ber of resets of the test databases [65], [66], [67] or the selection 
of test data for regression [68], [69], [70]. While these regression 
approaches are typically white-box oriented, as they take 
knowledge from the internals of the applications, other black-
box approaches [71], [72] perform test selection based on a Clas-
sification Tree Model used as specification. The closest work to 
our work [73] shares our goal to obtain a reduced database from 
an initial database. Given a set of single-table SQL queries and a 
fixed size of the reduced database, after generating a set of mu-
tants [17] for all queries, it performs a search on the initial data-
base using genetic algorithms. The result is a reduced database 
that has a similar mutation score to that of the initial database. 

Reverse query processing [48] generates the inputs that pro-
duce a given output for a query. A related problem is to obtain 
the existing inputs that produce a given output, which is called 
data provenance or lineage [74][75][76]. This has a number of 
applications that range from scientific workflows [77] to tracing 
data warehouse transformations [78] or Big Data [79]. The clas-
sification of different approaches depends on how we define 
that an input contributes to the output (contribution semantics). 
An initial classification is between why and where provenance 
[80]: the former refers to the source data tuples that had some 
influence on producing the output, while the latter refers to the 
location in the input (attributes) from which the data is ex-
tracted; refer to [81] for a comprehensive classification and over-
view of different approaches. 

Data lineage has been computed by defining a set of tracing 
queries over the source data of data warehouses [82][83]. The 
closest to our work is the Perm System [81][84][85][86] that ex-
tends the PostgreSQL DBMS and rewrites queries to obtain a 
provenance query that determines the source data. The reduc-
tion rules described in this paper also compute the source data 
for the coverage rules, but the implementation does not depend 
on a given DBMS and adds additional information needed to al-
low the reduction procedures to select a subset of the source 
data. 

This article shares some goals with most of the aforemen-
tioned works although it also pursues additional objectives: 1) 
to generate a test database (reusing an existing database instead 
of generating its data from scratch), and 2) to reduce the size of 
the tests (reducing the size of the test database instead of reduc-
ing the size of the test suite). 

3 PROBLEM STATEMENT 

Section 2.1 formulated the general problem of test suite reduc-
tion. It relies on a set of test requirements that must be satisfied 
by both the original and the reduced test set. Usually, these test 
requirements are stated in terms of some structural test coverage 
criterion (e.g. individual decisions made by branches in the pro-
cedural code). If the program uses a database, part of the deci-
sions taken in the code depend on the result of queries executed 
against the data stored in the database. Therefore, part of the ap-
plication logic is embedded in the SQL queries that access the 
database. The extreme case is an application intended for report-
ing, in which most of the logic relies on the SQL instead of the 
procedural code. In this case, the goal is to reduce the size of the 
test data, instead of the number of test cases. The ideal situation 

would be to include test requirements related to both the queries 
and the procedural code of the program, and then perform the 
reduction of the test suite and the amount of data stored in the 
test database. This paper focuses on the second of the aforemen-
tioned cases: the reduction of the test database. 

The output produced by a SQL query depends on the deci-
sions taken in the query (e.g. WHERE clauses) as well as other 
clauses (e.g. the different types of joins). The SQLFpc coverage 
criterion [4] defines a set of test requirements to exercise a query. 
Each requirement is also represented by a SQL query (coverage 
rule). When a coverage rule is executed against a given database, 
it produces a number of rows. Each row has been obtained from 
a subset of data that fulfills the test requirement (i.e. covers the 
rule). Therefore, it is enough to obtain a single row at the output 
to ensure that the test requirement is met. This will be the basis 
for the database reduction as if we obtain the subset of the data-
base that produces a single row at the output of the coverage 
rule, this subset will constitute a reduced database for that test 
requirement. 

In terms of the scope of this paper the reduction problem is 
focused on the database and the queries that are executed by a 
program. In this problem, the test suite is the set of tuples in a 
database, the program is a set of SQL queries and the test re-
quirements are determined by a set of coverage rules obtained 
by applying the SQLFpc coverage criterion (Section 2.3) to the 
queries under test. Taking into account the above considera-
tions, the reduction problem is reformulated as: 

Definition 1 (Test Database Reduction Problem). Given: An ini-
tial database D, a set {Qj} of RVEs (SQL queries), a set of SQLFpc 
coverage rules {i}=(Qj) that are covered when evaluated 
over D where (Qj) denotes the set of coverage rules for Qj, and 
the subsets of D, D1, D2,… Dn, one associated with each of the 
i’s such that any one of the Di covers the rule i. 

Problem: Find a reduced database D’ which contains a repre-
sentative set of tuples from every Di such that tuples from Di 
cover the rule i and every coverage rule i is covered when 
evaluated over D’. 

Coverage gain and loss. The test suite reduction problem (Sec-
tion 2.1) and the test database reduction problem (Definition 1) 
have a significant difference: Test cases Tk in test suite reduction 
are independent. Adding a test case never decreases the require-
ments coverage. However, subsets Di in test database are not in-
dependent. A single tuple may be shared by several Di causing 
a situation where adding tuples could uncover some require-
ment previously covered (coverage loss). For example, if a re-
quirement sum(a)<3 is covered and then we try to cover 
sum(a)≥3, the first requirement will become uncovered when 
adding tuples to cover the second one. The contrary may also 
occur (coverage gain), for example, in the case of outer joins. 
These issues will be discussed in further sections. 

The primary purpose of the test database reduction described 
here is to provide a starting point of a test database in order to 
facilitate the reset of the test database, the fault localization and 
debugging of failed tests, the test output evaluation and the 
maintenance and extensibility of test scripts. This will help the 
tester to develop, complete or automate functional tests.  

Therefore, the purpose is to achieve a reasonably good solu-
tion in terms of coverage and size of the reduced database, alt-
hough coverage may not be exactly the same as the initial data-
base for a few rules. 
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Approach: In general, the approach to produce a reduced da-
tabase is based on: 

1. The definition of reduction transformations () that pro-
duce reduction rules () from the coverage rules (). Re-
duction rules are RVEs that compute the provenance of 
the coverage rules when evaluated over the initial data-
base. 

2. The definition of reduction procedures for selecting a small 
number of tuples from those obtained by the evaluation 
of the reduction rule. These tuples are going to be added 
to the reduced database.  

After executing the reduction procedures for each reduction 
rule , the set of all resulting tuples plus additional tuples 
needed to enforce the referential integrity are copied to the re-
duced database (initially empty). 

4 REDUCTION RULES AND PROCEDURES 

This section details how the coverage rules are transformed into 
the reduction rules and how tuples resulting from the evalua-
tion of the reduction rule are selected to obtain the reduced da-
tabase. Firstly, we cover the most basic operators (Section 4.1), 
followed by frames (Section 4.2) and subqueries (Section 4.3). Fi-
nally, we summarize how all of them are combined (Section 4.4). 

4.1 Join and Select Operators 

The case of an RVE (query) that performs joins and a further se-
lection of joined tuples is the simplest one and allows the presen-
tation of the foundations of the reduction approach. We first il-
lustrate it with an example. 

Example 1. Consider an initial database D={R,S} which con-
tains two relations R(A0,A1) and S(B0,B1,B2), being A0 and B0 
primary keys and an RVE  which represents a coverage rule 
defined as: 

 := R[A0=B1]S [A1<14]  (A1,B2) 
In SQL: SELECT A1, B2 FROM R INNER JOIN S ON 

R.A0=S.B1 WHERE R.A1<14 
The reduction problem as stated in Section 3 consists in se-

lecting a subset D’D (i.e. subsets R’R and S’S) such that  is 
covered when evaluated over D’ (reduced database).  

Figure 1 depicts the global approach for this example: Start-
ing from a query Q a coverage rule  is obtained by applying a 
coverage rule transformation  [4]. By evaluating the coverage 
rule  over D, a relation Z is produced. The coverage rule is cov-
ered iff Z contains at least one tuple (as this means that there is 

some subset of data that satisfies the requirement specified by 
the coverage rule). Therefore, every subset D’={R’, S’} that pro-
duces at least one tuple of Z after evaluating the coverage rule  
over D’ is a reduced database. These subsets are obtained by ex-
ecuting a reduction rule and a reduction procedure as shown 
below. 

Reduction transformation and reduction rule. A reduction trans-
formation () transforms an RVE (coverage rule) into a reduction 
rule () in such a way that relation Z’ obtained after evaluating 
 over D allows identifying all source tuples of D. In the exam-
ple, this is accomplished by including the primary keys in the 
projection. The result is a new RVE called reduction rule.  

 := R[A0=B1]S [A1<14] (A0,B0,A1,B2) 
In SQL: SELECT A0,B0,A1,B2 FROM R INNER JOIN S ON 

R.A0=S.B1 WHERE R.A1<14 
Definition 2 (Reduction transformation for joins with select). Let  

:= R[p(A,B)]JTS[q(A,B)] be a coverage rule which joins tuples in 
relations R(A) and S(B) (called source relations) and then selects 
some of the resulting tuples according to a predicate q. The re-
duction transformation is the same as  including a projection 
on all attributes A,B: 

  JT() :=  (A,B)     (1) 

Then the reduction rule is =JT(). Primary keys of all relations 
in  are called source keys. 

Reduction procedure. A reduction procedure selects a small 
subset of tuples of Z’ and finds the source tuples in D to ob-
tain the reduced database D’={R’, S’}. The reduction procedure 
must use some kind of strategy in such a way that the reduced 
database is as small as possible. This is based on the cost of add-
ing each tuple of Z’ to D’ measured in terms of the number of 
new tuples that have to be added to the reduced database. In 
Example 1, as can be seen in Figure 1, Z’ contains two tuples. 
Either of them will produce tuples in R’ and S’ with cost 2. Each 
of them may be selected (for example, the first tuple of Z’ in the 
figure). The reduction procedure is incremental, being executed 
for each coverage rule, so that it takes into account tuples that 
are already in the reduced database. For example, if a tuple with 
A0=3 already exists in D’, the cost of the second tuple in Z’ will 
be 1 (a lower cost) as only one new tuple with B0=2 would need 
to be added to the reduced database. 

Definition 3 (Reduction procedure for joins with select). Let {i} be 
a set of reduction rules, D={Rj} the initial database and D’={Rj’} 
the reduced database (initially empty). Let zi

k be the kth tuple of 
the relation obtained after evaluating Z’ii and source(zi

k) the 
set of tuples in D that are determined by the primary key values 
that are in zi

k (source relation). Let cost(zi
k,D,D’) be an integer ex-

pression which counts the number of tuples in source(zi
k) that are 

in D, but are not in D’.  
The reduction procedure follows the algorithm in Figure 2: 

Each coverage rule i is transformed into the reduction rule i 
and evaluated against the initial database D. Then for each tuple 
zi

k the set of source tuples producing the minimum cost is con-
sidered the best solution and added to the reduced database D’. 

Coverage gain and loss: As the reduction procedure only adds 
tuples to the reduced database at each step, when a query has 
only selection and join operators, there are no coverage rules 
that are covered at some step and become uncovered at a later 
step (coverage loss). However, the opposite is not true: a rule 
that is not covered in the initial database may become covered 

  
Figure 1. Example of database reduction for simple queries with joins 
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in the reduced database (coverage gain). This is the case of rules 
with outer joins: Initially, master relations may have at least one 
related row in their detail, so, rules that require a master without 
any detail are not covered by the initial database. However, as 
the reduction process selects only a few rows from the initial da-
tabase, the reduced database may contain situations in which 
there is a row in a master table without any related row in the 
detail, leading to a coverage gain.  

4.2 Framed Relations 

Consider a coverage rule  that contains a framing operator: 
 := R///G [q(G, F)]  (G,F) 

In SQL: SELECT G,F FROM R GROUP BY G  
HAVING q(G,F) 

Where the grouping attributes G are attributes of R and F are 
aggregate functions on the attributes of R. The approach is illus-
trated below with an example. 

Example 2. Consider an initial database D={R} with a single 
relation R(A0,A1,A2), being A0 the primary key, and a coverage 
rule expressed by the following RVE: 

 := R///A1[sum(A2)>6] (A1,sum(A2)) 
In SQL: SELECT A1,SUM(A2) FROM R GROUP BY A1 

HAVING SUM(A2)>6 
 Figure 3 depicts the global approach for this example, which 

is described below.  
Reduction transformation and reduction rule. As the framing 

hides the tuples and primary keys that are grouped in each 
frame, the first step is to ungroup the frame by joining the rela-
tion Z obtained by evaluating the coverage rule with the original 
relation R using the grouping attributes (A1) as the joining at-
tributes, and then ordering by the grouping attributes of Z. The 
resulting relation (Z’) reveals the frames. 

Definition 4 (Reduction transformation for frames with select after 
frame). Let  := R///G[q(G, F)] be a coverage rule which frames 
the relation R according to the grouping attributes G and then 
selects those that fulfill the predicate q(G,F), where F are aggre-
gate functions over attributes in R. The reduction transformation 
generates an RVE that joins the coverage rule  with R based on 
the grouping attributes: 

FS() :=  [.G1=R.G1  .G2=R.G2  … ] R  (2) 
Then the reduction rule is =FS(). Relation  is called group re-
lation and relation R is called source relation. The grouping attrib-
utes are called group keys. The primary keys of R (source keys) 
determine tuples that form the group. The reduction rule is or-
dered by the group keys G in order to be able to perform the 
reduction using a sequential exploration of tuples retrieved. If 

relation R is the result of evaluating a query with joins and select 
operators, it is first transformed as indicated in Section 4.1.  

Reduction procedure. A naïve strategy would consist of apply-
ing the reduction procedure described in Section 4.1 considering 
ri

k as a subrelation containing all tuples in each frame of Z, and 
then selecting that with the lowest cost. However, each frame 
may contain thousands or millions of tuples, and then the reduc-
tion may be considerably far from the optimum. Selecting an ar-
bitrary subset in each frame is not possible because the candi-
date tuples must fulfill the constraint stated by the frame predi-
cate (sum(A2)>6 in the example). Therefore, each frame must be 
reduced before checking the cost of adding its source tuples to 
the reduced database. Another practical constraint is that the re-
duction must be able to handle frames containing many rows 
that may exceed the memory available, so that the reduction will 
explore the tuples in frames on the fly (in the order that they are 
obtained from the database).  

The reduction of each frame will be made using a greedy al-
gorithm that sequentially explores each tuple in a frame and 
adds it to the reduced frame if it improves a fitness function.  
This function measures the distance of a candidate solution from 
fulfilling the frame predicate. 

The reduction procedure uses the algorithm described in Sec-
tion 4.1 with two differences: 1) zi

k is the set of tuples that com-
pose a frame, instead of a single tuple, and 2) the set zi

k is to be 
reduced as much as possible while fulfilling the frame predicate 
q(A, F). To do this we use a search algorithm before the evalua-
tion of the cost. 

Reduction of frames. Search based algorithms have been previ-
ously used for a number of software engineering problems 
[87][88] and in particular, software testing [89][90]. A fundamen-
tal issue is the definition of a fitness function that is minimized 
in order to find the best solution among a number of candidate 
solutions. 

The fitness function incorporates a notion of distance or cost 
that measures how far a candidate solution is (i.e. a set of inputs) 
from satisfying some criterion (e.g. make true or false a given 
condition or decision). The distance for relational expressions is 
evaluated using cost functions, such as that defined by Tracey et 
al. [91]. Fitness functions usually include the cost and an addi-
tional term called approach level [92].  

When ranges of variables are very different, using a simple 

 
  Let D’= (reduced database initially empty) 
  For each coverage rule i of every query 
      Let BestDB=; BestCost=∞ (initial cost) 
      Let i = (i) (obtain the reduction rule) 
      Let Z’ii (evaluation over the initial database) 
      For each zi

k in Z’i 
          Let CurrentDB=source(zi

k) (candidates to insert in D’) 
          Let CurrentCost=cost(zi

k,D,D’) (cost of adding zi
k to D’) 

          If CurrentCost=0 (no cost, no data to add) 
              BestDB=; exit inner loop 
          If CurrentCost<BestCost (cost improves, save best solution) 
              Let BestDB=CurrentDB; BestCost=CurrentCost 
      Let D’=D’BestDB (add the best solution found to D’) 

 
Figure 2. Algorithm to select the reduced database with lowest cost 

  
Figure 3. Example of database reduction for queries with frames and select 
after frame 
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 := R///A1[sum(A2)>6] (A1,sum(A2))
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distance function may distort the results. Consider the decision 
a>5 AND b<2020, where the ranges of a and b are 0..10 and 
0..10000, respectively, and two pairs of inputs a=0, b=1910 and 
a=4, b=1900. If the distance of a logical expression is defined as 
the sum of the individual distances, the distance of the second 
pair is larger by 6 units. However, in this context the second pair 
is a better solution because the value of the first condition is very 
close to the solution. Several approaches to normalize the dis-
tances are given in the literature such as that defined by Baresel 
[93] which expressed the normalized distance as 1-1.001-dist. 
However, this kind of normalization has some drawbacks [94]. 

The problem of searching for solutions in the context of the 
reduction of frames, which is the subject of this section, has some 
particularities that have to be handled: 

1. A solution is a set of tuples (a subset of the frame that has 
to be reduced). Expressions contain aggregate functions 
over attributes of the solution that have to be evaluated 
over sets of tuples. 

2. The problem does not consist of generating new candi-
date tuples, but rather of selecting a set of tuples from the 
original frame that will be included in the reduced frame. 

3. The algorithm is constrained by the practical necessity of 
a sequential evaluation of the original tuples, which may 
contain a large number of tuples that cannot fit in the 
memory. Therefore, each one of the visited tuples (candi-
date tuple) has to be considered on the fly either to be 
added or discarded into the reduced frame. 

4. The normalization of distances is very important, because 
logical expressions may involve relational expressions in-
cluding variables with short ranges (e.g. when counting 
the number of tuples in the frame) and variables with 
large ranges (e.g. when adding currency values).  

Taking into account the above considerations, the definitions of 
distance, fitness and reduction procedure for frames are pro-
vided below: 

Distances for base predicates: Let XZ’ be a single original 
frame that is being reduced and X’ the reduced frame (initially 
empty). Let pi be a base predicate, which may contain references 
to attributes or aggregate functions over attributes but not logi-
cal expressions. The distance d(pi,X’) over the relation X’ is cal-
culated using the Tracey functions [91].  

Consider, for example, a predicate p:=sum(a)8 evaluated 
over a relation with three tuples {(1), (2), (3)}. The evaluation of 
the distance calculates the term sum(a) which gives 6. Then the 
distance is 8-6=2. 

Definition 5 (Fitness function for the frame predicate). Let T be a 
subrelation TX (candidate tuples to be added to X’). The fitness 

f(pi,T,X’) of predicate pi when adding candidate tuples in T to X’ 
is calculated with respect to the previous distance (before add-
ing the tuples T) according to: 

fitness(pi) := f(pi , T, X') = 1 
  
    

 dcand 
 dprev 

 = 1 
  
    

 d(pi , X'T) 
 d(pi , X') 

 

where dprev is the distance of the predicate pi with regard to the 
relation X’ and dcand is the distance of the predicate pi with respect 
to relation X’ after adding the candidate tuples T. 

Note that this definition of fitness is relative to the distance of 
a previous solution and therefore it prevents the aforemen-
tioned normalization problem. A positive value of fitness means 
that adding the candidate tuple approaches the reduced frame 
to the solution and conversely for negative values. A value of 0 
means no change and a value of 1 means that a solution has been 
found. 

Let q be a predicate based on a logical expression over predi-
cates pi. The fitness function for logical expressions is calculated 
as: 

fitness(p1  p2) := average(fitness(p1), fitness(p2)) 
fitness(p1  p2) := maximum(fitness(p1), fitness(p2)) 

Note that these functions are different to the Tracey’s func-
tions: For AND operators fitness of p1 and p2 cannot be added 
because the fitness is upper bounded by 1. For OR operators the 
maximum is calculated instead of the minimum because in this 
case larger values of fitness mean lower distance to the objective.  

Definition 6 (Reduction procedure for frames). The reduction pro-
cedure for a frame X and a frame predicate q follows the algo-
rithm in Figure 4. 

Let us return to the example shown in Figure 3 to illustrate 
how the frame reduction works. The reduction rule produces 
two frames (for values x and z of A1). When the above algorithm 
processes the first frame it performs four iterations, one for each 
tuple: 

1. The first tuple is added to X’. 
2. dprev=6-sum(A2)+=2+. The second tuple adds a value of 

0 for A2. Then dcand=dprev, therefore, fitness=0. As fitness is 
not positive the tuple is skipped. 

3. dprev=2+. The third tuple adds a value of 2 for A2, so 
sum(A2)=6 and dcand=6-6+=, therefore, fitness=1- (the 
predicate sum(A2)>6 still is false). This tuple is added to 
X’. 

4. dprev=. The fourth tuple adds a value of 6 for A2, so 
sum(A2)=12 and dcand=0, therefore, fitness=1 (The predi-
cate is fulfilled) and this tuple is added to X’. 

Once X’ is obtained, it is explored again in order to check 
whether some tuple may be removed while keeping the predi-
cate sum(A2)>6 true. Removing the first tuple fulfills this predi-
cate so that it is removed from X’. No other tuples fulfill this 
predicate, so that solution is composed by the 3rd and 4th tuples 
of the original frame. 

The same algorithm is applied to the second frame, which 
gives a solution consisting of all tuples (1st, 2nd and 3rd tuples). 

From the above reduced frames the first one is selected as its 
cost is 2 (it adds two tuples) while the cost of the second reduced 
frame is 3 (it adds three tuples). 

Note that the selection of the frame to be included in the re-
duced database depends on the initial state of the reduced data-
base. In this example an empty reduced database was assumed 

 
  Let X’= 
  For each subrelation TX composed by a single tuple 
  (candidate tuple) 
      If processing first iteration then 
          Let X’=T 
      Else 
          Let f=fitness(q,T, X’) (fitness caused by adding T to X’) 
          If f>0 then 
              Let X’=X’T (add tuple contained in T to reduced frame) 
          If f=1 then (condition is true, solution is found) 
              Try to remove every single tuple in X’ whenever 
               fitness is 1 after removal and return 
 

Figure 4. Algorithm to reduce a frame 
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as starting point. However, if the reduced database before the 
algorithm contained the last two tuples of X’, the selected frame 
would be the latter, because, although it consists of three tuples, 
only one of them would be added to the database. 

The implementation of the reduction algorithm supports the 
SQL aggregate functions count, max, min, avg, sum. When aggre-
gate functions are involved in a predicate their arguments are 
included as additional attributes in the reduction rule. The re-
maining scalar subexpressions are also converted into addi-
tional attributes in order to facilitate the evaluation and to sup-
port SQL functions. When a frame is evaluated to determine the 
fitness function the predicate is algorithmically evaluated (logi-
cal, relational and arithmetic operators as well as null value se-
mantics are supported). The aggregate functions are evaluated 
over the tuples in the frame using the attribute representing its 
argument (which will take different values at each tuple). Alt-
hough the RVE’s in the relational algebra are set oriented, SQL 
is bag oriented. Therefore, by default duplicates are not re-
moved in SQL unless the distinct set quantifier is specified. The 
evaluation of aggregate functions takes into account this seman-
tics and includes support for the distinct quantifier in aggregate 
functions.  

Coverage gain and loss: There are some occasions on which a 
rule that is covered becomes uncovered after adding additional 
rows. Two main kinds of coverage rules may produce these cov-
erage losses: 1) A rule with a frame and a select after the frame: 
If the reduction algorithm is unable to obtain a solution for any 
frame, this rule will lose the coverage (due to the greedy and 
sequential design of the reduction procedure). 2) A rule with 
frame predicates that involve aggregate functions: For instance, 
during reduction a frame predicate sum(a)<10 may be fulfilled, 
but after applying the reduction algorithms to other rules, new 
rows with large positive values for a may be inserted in the same 
reduced database.  

In the second case, the problem is unsolvable for pairs of rules 
without grouping attributes in the form sum(a)<10, sum(a)≥10 
because they cannot be simultaneously true in the same data-
base. It can be potentially solvable if frames have grouping at-
tributes by ensuring each rule is satisfied in different frames. 
With the current implementation, as the reduction procedures 
process each rule sequentially, there is a possibility that the same 
frame be selected leading to a coverage loss. This could be 
avoided by reprocessing these uncovered rules to ensure that 
they are satisfied over different frames. 

4.3 Subqueries 

Reduction transformations for subqueries are inspired in earlier 
works from Kim [95] and Ganski and Wong [96]. These are mo-
tivated by the difficulty of DBMSs to evaluate efficiently the 
subqueries. Basically, they consist of removing the subqueries 
by joining the subquery expressions in the main query. In this 
article the goal is different as the problem is to obtain the source 
tuples that are processed in the evaluation of a reduction rule to 
produce an output, but the key ideas of these transformations 
are still applicable. 

Consider an RVE in the form R[p] where R is a relation (which 
may contain joins) and p is the select predicate. Select predicates 
with subqueries include expressions on attributes A of R and 
subqueries S. There are three different kinds: 

 Scalar subquery: A rop (S), where rop is a relational opera-
tor. 

 Logical predicates: A [not] in (S), [not] exists (S). 
 Quantified comparison predicate: A rop [[not] any| some | 

all] (S). 
Additionally, depending on the form of S there are other vari-
ants: 
 Correlated subquery: where a select expression in S refer-

ences some attribute on the outer query. 
 Group subquery: where S includes grouping and aggre-

gate functions. 
The reduction transformation creates a reduction rule that joins 
relation R with S, over a predicate for joining only the tuples that 
satisfy the subquery expression as shown below: 

Definition 7 (Reduction transformation for scalar subqueries). Let 
 := R[p] be a coverage rule, where p contains some scalar 
subquery expression in the form A rop S[q] (B0). Let B0 be the 
(unique) projected attribute of S. Let replace(x,y,z) be the replace-
ment of y by z in x. The reduction transformation is defined as: 

SQ() := R[A rop B0]LS [replace(p,S,B0q)] (3) 
In SQL: SELECT * FROM R LEFT JOIN S ON A rop B0  

WHERE replace(p,S,B0 AND q) 
Then the reduction rule is =SQ(). Relation R is called base re-
lation and relation S is called source relation. Source tuples are de-
termined by the primary keys of both R and S. 

Example 3. Consider the following RVE (coverage rule): 
R[A1=2  A2 = (S[B1=0](B0)) 

In SQL: SELECT * FROM R WHERE A1=2 OR A2=(SELECT 
B0 FROM S WHERE B1=0) 

Using the previous definition, the reduction rule is: 
R[A2=B0]LS [A1=2  (A2=B0B1=0)] 

In SQL: SELECT * FROM R LEFT JOIN S ON A2=B0 
WHERE A1=2 OR (A2=B0 AND B1=0) 

Note that join type is left and the join predicate has also been 
added to the select predicate. This allows handling OR expres-
sions that may be true even if the subquery expression is false.  

The other kinds of subqueries are handled as particular cases: 
Case 1 (in, not in). A [not] in S is replaced by A=S and A≠S, 

respectively before applying the reduction transformation. 
Case 2 (exists, not exists). For exists subqueries A rop B0 is re-

placed by true in the reduction transformation. In the case of not 
exists, the transformation is simplified to the original query R 
[p(A)] as no tuples have to be selected from S. 

Case 3 (any, some, all subquery). Predicates are replaced by their 
equivalents using scalar subqueries. 

Case 4 (group subquery). The RVE of the subquery includes 
groups in the form S[q]///G[r] (aggr), where aggr is an aggregate 
function over the attributes of S. To obtain the reduction trans-
formation, the subquery is first transformed according to Defi-
nition 4 and then Definition 7 is applied. To ensure that the re-
duction process finds only tuples that satisfy the subquery con-
dition a correlation frame predicate is created in the form A rop 
aggr. If a subquery has groups, the frame predicate is the logical 
conjunction of these and that obtained by the group transfor-
mation. 

Case 5 (correlated subquery without groups). In a correlated 
subquery S, the select predicates of relation S contain references 
to attributes of the parent relation R. As the general transfor-
mation includes the select predicate of subquery S, no additional 
considerations are needed. 
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Case 6 (correlated subquery with groups). When a correlated 
subquery includes groups it is first transformed according to 
Kim’s JA Nested query algorithm [95]. 

Reduction procedure. When a subquery does not contain 
groups, only a tuple is needed to satisfy the coverage criterion. 
Therefore, the reduction procedure is that of queries with select 
and joins (Section 4.1). If a subquery contains groups, the reduc-
tion procedure is that of queries with frames (Section 4.2). 

4.4 Reduction for Combinations of Operators 

The previous section deals with coverage rules that include a 
single nesting between two relations. In general, a coverage rule 
may contain different combinations of operators. Figure 5 dis-
plays at the top an example of a coverage rule with a frame op-
erator and two subqueries, the second one also includes frames. 
The generation of reduction rules and the reduction procedure 
in these cases is described below and illustrated with an exam-
ple. 

Reduction rules. Given a main RVE which contains nested 
RVEs, the generation of its reduction rule  proceeds recursively 
(depth first) starting from the main RVE. Given a current RVE 
that is visited: 
 The appropriate transformation rule is applied to remove 

the nesting or frame. If the RVE is a subquery containing 
a frame, the transformation of the frame is performed be-
fore the transformation of the subquery. 

 A set of attributes, called frameset is added as a projection 
in the reduction rule. These attributes include the group-
ing attributes (if any), the base and source keys and other 
attributes from source relations needed to evaluate ex-
pressions (e.g. arguments in aggregate functions). 

The reduction rule is ordered by the group key and base key 
attributes of the framesets in the same order that they have been 
obtained. This will allow a sequential exploration of tuples re-
trieved to perform the reduction. 

Example 4. Consider the example of an RVE depicted at the 
top of Figure 5 that contains a main query Q1 (based on relation 
S) with a frame operator. Q1 has two select predicates which in-
volve subqueries Q2 (based on T) and Q3 (based on U with a 
frame operator). The corresponding reduction rule is depicted 
at the bottom of Figure 5. 

The main query Q1 forms groups: Transformation in Defini-
tion 4 is applied where Q1 is the group relation, g is the group 
key, S is the source relation and k1 is the source key. The frame-
set is composed by g, k1. 

The resulting query still has two subqueries. Q2 is a scalar 
subquery: Definition 7 is applied where base relation is S, source 
relation is T and base and source keys are k1, k2 respectively, 
which form the second frameset. 

Finally, the resulting query has a single subquery Q3 which 
forms groups. According to Section 4.3 (Case 4), Definition 4 is 
first applied where Q3 is the group relation, h is the group key, 
U is the source relation and k3 the source key. Definition 7 is 
applied where S is the base relation, U is the source relation and 
k1, k3 are the base and source keys, respectively. A correlation 
frame predicate b<sum(d) is created associated to this group. The 
third frameset is composed by h, k1, k3, b, d. Note that b and d 
have been added as they are needed to evaluate the frame pred-
icate. 

Reduction procedure. After obtaining the result set that con-
tains tuples retrieved by the execution of the reduction rule, the 
problem is to detect and explore every frame from the initial da-
tabase to select subsets of tuples based on the fitness functions 
and the costs. We can view these tuples as a logical table that is 
called reduction tableaux. Figure 6 displays a reduction tableaux 
for the previous example: Columns represent the framesets and 
their attributes (greyed columns include other attributes of the 
relations, although they do not belong to the framesets). Rows 
(tuples) and columns are partitioned into frames. From the fig-
ure we can see that each frame partitions the tuples that belong 
to its left frame based on the repeated values for keys of the 
frameset (repeating values of tuples inside a frame are not 
shown at each row for clarity). 

Reduction is performed by exploring the reduction tableaux, 
taking into account: 
 Tuples are processed sequentially: only a current tuple 

needs to be fetched from the database at each time. 
 Each frameset maintains two sets of frames to keep track 

of the best and current solutions, respectively. This is the 
only data structure that is kept in memory 

 We say that a frame or a frameset is at the end/beginning 
when the tuple below/above the current tuple belongs to 
a different frame, respectively. 

To find a solution (tuples to be inserted in the reduced data-
base) the evaluation proceeds over each frameset in the tableaux 
from left to right: 
 When a frame begins to be evaluated the evaluation of its 

right frame is triggered before processing any of its tu-
ples.  

 When a frame ends its evaluation the current solution is 
added or replaces the current solution of this frame based 
on the cost.  

 After the end of the evaluation of a frame, if its left frame 
is not at the end, the evaluation of the next frame begins 
again. Otherwise, the end of evaluation of the left frame 
is triggered.  

A solution composed by the best solution of each frameset is 
found after the processing of the first frameset ends. Then, if 
there are more tuples the processing begins again to search for 
better solutions based on the cost. 

Example 4 (cont.). Let us illustrate the above process using the 
reduction tableaux displayed in Figure 6. We consider in this ex-
ample that the reduced database contains one tuple of T with 
k2=2 from the reduction of a previous rule. The following para-
graphs detail the reduction process. 

   
Figure 5. Example of nested queries and their reduction rule 

Q1 := S [a in Q2  b<Q3] /// g (g,count(*))

Q2 := T(c)

Q3 := U // h (sum(d))

Q1

Q2 Q3

SELECT g,count(*) FROM S WHERE
a in (SELECT c FROM T)
AND b < (SELECT sum(d) FROM U GROUP BY h)
GROUP BY g
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Source
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S T

Q2 S U
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Q3

Q1 [Q1.g=S.g] S 
[S.a=T.c] T 
[S.b<Q3.sum(d)] 

(Q3 [Q3.h=U.h] U)

SELECT g,k1,a,b,k2,c,h,k3,d FROM Q1 Q1Alias
LEFT JOIN S ON (Q1Alias.g = S.g)
LEFT JOIN T ON (S.a = T.c)
LEFT JOIN (Q3 Q3Alias LEFT JOIN U ON (Q3Alias.h = U.h) )

ON (S.b < Q3Alias.SumAlias)
ORDER BY Q1Alias.g , S.k1 , T.k2 , Q3Alias.h , U.k3

Note: sum(d) in Q3
is aliased as SumAlias

Database
Schema
S (k1,a,b,g)

T(k2,c)

U(k3,d,h)
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The reduction starts at tuple 1 and frameset 1 which triggers 
the evaluation of framesets 2 and 3. Frameset 3 begins pro-
cessing its tuples. Tuple 1 is included in its current solution for 
frameset 3, although the frame predicate is not covered yet. The 
process continues by evaluating frameset 3 with tuple 2. The cor-
relation frame predicate b<sum(d) improves the fitness and then 
tuple 2 is added to its current solution. The process continues by 
adding tuple 3 and finally tuple 4. At this point the frame pred-
icate is true and there are no more tuples. A solution for frameset 
3 has been found. Cost is evaluated as the sum of tuples to be 
inserted from the base tables: one for frameset 1, one for frame-
set 2 and 4 for frameset 3:  cost=1+1+4=6. At this point, frameset 
2 is at the end and then its current solution is stored as the best 
solution (same solution). 

Frameset 1 is not at the end, therefore the evaluation of frame-
set 2 (2nd frame) is triggered, which triggers again the evalua-
tion of frameset 3. Tuples 5, 6, 7 and 8 are processed as before 
until the solution is found. At this point frameset 2 is at the end, 
but now the cost is 1+0+4=5 (as the tuple with k2=2 in T was 
previously present in the reduced database). Then the best solu-
tion for frameset 2 is replaced by this one. Frameset 1 is at the 
end, so, its solution is also recorded as the best solution. 

Row 9 restarts the evaluation of all framesets as in previous 
paragraphs, but in this case only two tuples are needed to make 
true the correlation predicate b<sum(d) in frameset 3. The cost of 
this solution is 1+1+2=4. As at this point frameset 2 is at the end, 
this solution is also stored as its best solution. Likewise, frameset 
1 is at the end, and the same solution replaces the previous best 
solution. 

The final solution is the best solution for framesets 1 to 3, 
which include tuples 9 and 10. Looking at the primary keys in 
the tableaux we determine the tuples which have to be inserted 
in the reduced database: k1=2 (relation S), k2=3 (relation T) and 
k3=1, k3=2 (relation U). 

Handling Views. The above reduction transformations may 
handle base relations (i.e. those which are implemented as ta-
bles) or derived relations (i.e. those which are composed by the 
result of evaluating a query). However, in commercial DBMS 
systems, named derived relations (called views) are frequently 
used. The procedures described before are applicable in this 
case, but a preprocessing stage is needed before transforming 
the coverage rules into the reduction rules. Whenever a view is 
 

1 QAShrink is available at: http://in2test.lsi.uniovi.es/sqltools/qashrink/ 

found in a coverage rule, 1) the RVE that describes it is extracted, 
2) transformed as shown above, 3) an auxiliary view with the 
transformed RVE is created with a different name (reduction 
view) and 4) the coverage rule is modified by replacing the name 
of the original view by the name of the reduction view. 

5 OPTIMIZATION AND TOOL SUPPORT 

The reduction transformations and procedures shown in previ-
ous sections have been implemented in the QAShrink1 tool, 
which automates the whole reduction process, including the 
generation of coverage rules, transformation into reduction 
rules and execution of the reduction procedures. Once the re-
duction procedures for all rules have finished, QAShrink selects 
the rows (tuples) from the initial database that have to be in-
serted in the reduced database and determines what other rows 
have to be added in order to preserve the integrity constraints. 
Finally, all these selected rows are copied from the initial data-
base to the reduced database. The script to do this can be saved 
to allow the performance of further resets of the reduced data-
base. 

The reduction rules are SQL queries that are executed over 
the initial database to produce result sets that are processed by 
the reduction procedures. There are a number of factors affect-
ing time performance of the reduction: 1) The query execution 
time especially for complex queries and when many rows have 
to be processed. 2) The row fetch time as most of the time spent 
in the transport of data between the database management 
server and the client machine is idle time waiting for the trans-
ference of a new data block. 3) The time spent in executing the 
reduction procedures. The rest of this section deals with the op-
timizations that have been implemented in QAShrink to im-
prove its efficiency. 

Three main kinds of optimizations may be made, which are 
detailed in subsequent sections: 

1. Manipulate the reduction rule in order to achieve a faster 
execution in the database server. This will be accom-
plished by making some transformations on the reduc-
tion rule (Section 5.1). 

2. Manipulate the reduction rule to limit the size of the re-
duction relation, i.e. the number of tuples returned by the 
reduction rule (Section 5.2). The use of this optimization 
can be optionally selected by the user.  

3. Parallelize some operations in order to take advantage of 
multicore architectures and the load distribution be-
tween client and database server machines, i.e. the exe-
cution of the reduction procedures and the reduction 
rules, respectively (Section 5.3). The use of this optimiza-
tion can be optionally selected by the user. 

5.1 General efficiency optimizations 

Coverage rules for a query are designed to obtain a subset of 
rows that satisfy a given test requirement for a query. This pro-
duces fewer rows than the original query and as such a faster 
processing. However, the transformations that obtain the reduc-
tion rules introduce an overhead due to the additional joins used 
to determine the base keys. A number of optimizations are made 
after the reduction rules have been generated: 

   
Figure 6. Example of a reduction tableaux for nested RVEs 

g k1 a b k1 k2 c h k1 k3 b d

1 1 1 4 6 1 1 4 1 1 1 6 2

2 2 2

3 3 2

4 4 2

5 1 2 4 1 1 1 6 2

6 2 2

7 3 2

8 4 2

9 2 2 5 3 2 3 5 1 2 1 3 2

10 2 2

11 3 2

12 4 2

Tuple 

Id

Frameset 3 (Q3)Frameset 2 (Q2)Frameset 1(Q1)

http://in2test.lsi.uniovi.es/sqltools/qashrink/
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Frame removal: If a rule does not have any select after a frame, 
the frames are removed as the reduction procedure only needs 
a single tuple from the frame to cover the rule.    

Using SQL windowing functions2 for frames: It is applicable only 
if the DBMS supports such functions. When this optimization is 
applied the clause PARTITION BY … OVER is used instead of 
joining the source and group relations. 

Move subqueries to join clauses: If an uncorrelated scalar 
subquery appears at a conjunctive selection predicate, the con-
dition containing the subquery is used for joining the source and 
base relations. This helps the DBMS to retrieve the data faster. 

Convert non-scalar to scalar subqueries: In the above case, if the 
aggregate function is avg, max or min and the relational operator 
is < or ≤, an additional condition is added to the join predicate 
to force the subquery to return to the maximum value (con-
versely if operator is > or ≥). This decreases the number of tuples 
that are retrieved from the database and additionally avoids po-
tential coverage losses. 

Simplification of subquery rules: Some coverage rules for uncor-
related subqueries include a main query and a where clause 
with the subquery inside of an exists logical predicate. As at least 
one row that satisfies the main query has been obtained when 
processing the previous rules, the current rule is simplified by 
removing the main query.   

5.2 Limiting the size of the reduction relation  

A smaller size of the reduction relation is achieved by modifying 
the reduction rule to specify a limit in the number of tuples of 
different frames. Four different cases can be specified for: 

1. Queries without frames: To limit the tuples retrieved by the 
reduction rule described in Section 4.1.  

2. Queries with frames. To limit the tuples retrieved by the 
group relation described in Section 4.2. 

3. Frames. To limit the tuples retrieved by the source rela-
tion described in Section 4.2.  

4. Subqueries: To limit the tuples retrieved by the source re-
lation described in Section 4.3.  

This is accomplished by enclosing the SQL of the reduction rule 
under the clause PARTITION BY … OVER. This allows control-
ling the size of each frame by specifying its maximum number 
of tuples. Note that this optimization can only be used if it is 
supported by the DBMS. The particular syntax depends on the 
particular DBMS vendor specification. For instance, in SQL 
server the TOP keyword is used after SELECT. In Oracle, the 
ROWNUM special column is added in a condition of the 
WHERE clause. 

Limiting the result size is a trade-off between cost and qual-
ity. When limiting the result set size the efficiency improves as 
less data is read from the dataset. However, this implies that less 
data may be reused when performing the reductions and so, a 
larger reduced database may be produced.  

5.3 Parallelizing tasks 

Consider a database reduction that has to process a number of 
reduction rules i. The client computer applies the reduction 
transformations to generate a rule 1 that is sent to the database 
server for execution. It receives the result from the database 

 

2 The windowing functions (eg. PARTITION BY) were introduced by the 
ANSI/ISO SQL:2003 standard. They are supported by DBMSs such as Oracle, 
SQLServer or PostgreSQL. 

server and then executes the reduction procedure. After finish-
ing, the next rule 2 is sent to the database and so on. Although 
some processes may be executed in parallel (database server 
may parallelize some tasks and rows can be sent to the client 
while it is still processing a query) the smallest time is con-
strained by the sum of the execution times of each rule i. 

To allow a faster processing we should parallelize some other 
tasks. For example, assume that we send four rules to be exe-
cuted at the database server in parallel. At this moment, the cli-
ent is idle waiting for some result set. At some time, two rules 
begin returning result sets to the client. Then, two reduction pro-
cedures are now being executed in parallel. As soon as one of 
these procedures finishes (e.g. 1), a new rule (5) is issued to the 
database server and so on. Now the total time is not constrained 
by the sum of execution times of all rules. This design is detailed 
below. Figure 7 depicts the different tasks that may be executed 
as different subprocesses (threads). These optimizations are not 
dependent on the DBMS and therefore they can be applicable in 
all cases. 

Parallelizing Query Execution: Several queries (reduction rules) 
are submitted in parallel for execution to the database server. 
Having several processes in parallel allows decreasing the total 
query execution time in the database server and an additional 
decreasing of the time that the reduction procedure must wait 
between issuing a query for execution and the fetching of the 
first result set row. 

Parallelizing Reduction & Cost Evaluation: Each thread executes 
the reduction procedure for a rule, evaluates the cost and de-
cides whether a row will be kept to be inserted in the reduced 
database. This decreases the total time of the reduction proce-
dures. 

Row Fetch & Selection: This process coordinates the overall re-
duction process. It receives each open result set from the execu-
tion of reduction rules and sends rows to the Reduction & Cost 
Evaluation threads. As soon as it receives the latest row from a 
rule, it issues the next rule for reduction. This does not preserve 
the order in which rules are reduced, but contributes to keep all 
processors as busy as possible. 

6 EVALUATION 

To assess the feasibility of the approach to database reduction 
we present the results of the reduction obtained with three dif-
ferent databases as case studies. 

6.1 Research Questions 

This evaluation addresses four primary exploratory questions 
related to the effectiveness: 
 RQ1: How does the reduction perform in terms of fault-

Figure 7. Parallelizing the reduction procedures 
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detection effectiveness at the query level?  
 RQ2: How does the reduction perform in terms of cover-

age at the query level?  
 RQ3: How does the reduction perform in terms of reduc-

tion effectiveness? 
 RQ4: How does the reduction perform at the application 

level? 
Two additional secondary questions related to the efficiency 
that may have influence on RQ1 to RQ4 are addressed: 
 RQ5: Is the approach scalable with the size of the data-

base? 
 RQ6: How do the optimizations affect the performance 

of the reduction? 

6.2 Objects of Study 

This evaluation uses three different initial databases (Helpdesk, 
Compiere and several instances of TPC-H from 10MB to 100GB) 
and their associated queries. Table 1 displays for each database 
the DBMS used, the number of tables, its size in terms of the total 
number of rows for all tables as well as the size of the largest 
table. The last columns show the number of queries that will be 
used in this study and the number of views that are used. 
 

Table 2 displays more detailed metrics for a number of repre-
sentative queries, including the total number of tables involved 
in the query, the number of groupings (G), union statements (U), 
views (V) and subqueries/derived tables (S). The complexity of 
decisions is measured by counting the number of case state-
ments (C) and the number of conditions in where (W). 

Helpdesk is an in-house web application to manage service re-
quests [7]. We used a production database as the initial database 
with 22,387 tickets, 103,553 annotations on tickets and 279 users. 
The SQLServer database contains 31 tables. The set of queries 
has been taken from the database logs collected during security 
 

3 The source distribution of Compiere can be found at http://source-
forge.net/projects/compiere. The set of views used in this study can be found in 
the file compiere-all\db\database\Create\Views.sql of the Version 2.53b. 

testing sessions, comprising 198 different queries.  
Compiere3 is an open source ERP and Customer Relationship 

Management (CRM) business solution for Small and Medium-
sized Enterprises. We used as initial database a randomly gen-
erated Oracle database containing 129 tables. The tables have an 
average of 23 columns, the largest having 84 columns. The set of 
queries is composed of the full set of views of the application 
(107 queries). 

TPC-H [97] is a benchmark to evaluate the performance of the 
execution of queries against databases. It contains 8 tables and 
22 queries4 which cover most SQL constructs. Queries are de-
signed to stress the DBMS and include different combinations of 
joins, groupings, different kinds of subqueries and derived ta-
bles. We divided the queries into two objects of study (11 queries 
each): TPCHg which mainly contains groups without 
subqueries and TPCHs which contains subqueries, groups and 
a view.  

This study has been performed using two 4 core Intel Xeon 
X5660 2.8GHz virtual machines. The QAShrink application uses 
a 3GB virtual machine. The database server uses SQL Server 
2008 R2 and Oracle Database 11g Enterprise V11.2.0.1.0 with 
6GB reserved for the database. In order to avoid the bias caused 
by database cache between experiments, every run has been pre-
ceded by a complete shutdown of the database server. 

6.3 Effectiveness at the query level (RQ1 to RQ3) 

Table 3 displays the main results related to RQ1 and RQ2. To 
assess the fault-detection effectiveness we performed a mutation 
analysis. Previous studies showed that mutation analysis is an 
appropriate method for evaluating the fault detection capabili-
ties of a test suite [98][99]. As we deal with SQL queries we gen-
erated a set of mutants for each query using the SQLMutation 
tool [22]. It applies two main kinds of query mutation operators 
(described in detail in [17]): 
 Conventional mutations on relational, logical and arith-

metic operators in conditions and expressions, and re-
placement of identifiers. 

 SQL specific mutations on main SQL clauses (joins, 
subqueries, aggregates, etc.) and null values.  

Both mutation score and SQLFpc coverage were measured 
against the initial and the reduced databases.  

RQ1 (fault detection effectiveness). From Table 3 we can appre-
ciate that the reduction produces a decrease in mutation score, 
small in some databases and larger in others (maximum value is 
6.6%). These results show fairly similar effectiveness losses to 
other results for non-database applications described in Section 
2.1 which show up to 7.3% effectiveness losses. That means that 
the reduced database contains a diverse set of rows that may be 
considered good enough to be used for testing purposes in the 
sense that they have similar fault detection ability measured in 
terms of mutants. 

RQ2 (coverage). At first glance, when considering the SQLFpc 
coverage the expected result would be to achieve a lower or 
equal coverage than using the initial database, but the actual re-
sult shows that coverage increases in all reduced databases 
(maximum value 4.9%). This increasing of coverage depends on 

4 The specification of the the database schema and all queries for the latest 
versión of TPC-H can be found at http://www.tpc.org/information/cur-
rent_specifications.asp under sections 1.2 and 2.4, respectively. 

TABLE 1. DETAILS OF THE DATABASES USED IN THE STUDY 

Database 

name 

DBMS Tables Rows (all 

tables) 

Rows 

(largest 

table) 

Que-

ries 

Views 

Helpdesk SQL Server 31 137,490 103,553 198 7 

Compiere Oracle 129 127,200 1,000 107 5 

TPC-H (5 

instances) 

Oracle 8 86,805 to 

866E+6 

6,175 to 

600E+6 

22 1 

TABLE 2. DETAILS OF SOME QUERIES USED IN THE STUDY 

Database 

name 

Query name/id Tables G U V S C W 

Helpdesk 17 10      2 

 18 11   1  2 11 

 29 8  1  2  4 

 50 2    1  4 

Compiere RV_BPartnerOpen 7  2 2  14 4 

 C_Invoice_Candidate_v 5 1   1  24 

 C_Invoice_LineTax_vt 24  5   13 5 

 RV_UnPosted 16  15    15 

TPCH 7 6 1   1  11 

 8 8 1   1 1 10 

 20 5    3  10 

 21 6 1   2  13 

http://sourceforge.net/projects/compiere
http://sourceforge.net/projects/compiere
http://www.tpc.org/information/current_specifications.asp
http://www.tpc.org/information/current_specifications.asp
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the coverage gains (a coverage rule is not covered when exe-
cuted against the initial database, but covered when executed 
against the reduced database) and coverage losses (a coverage 
rule is covered when executed against the initial database, but 
uncovered when executed against the reduced database). The 
last rows in Table 3 display each of these values (number of rules 
that become covered or uncovered, respectively, after the reduc-
tion). 

Coverage gains are due to data not selected from the initial 
database in detail tables as explained in Section 4.1 and coverage 
losses are caused by aggregate functions as explained in Section 
4.2.  From the data in Table 3 we can conclude that for the data-
bases used in this study the reduced database is a reasonably 
good solution in terms of coverage, although with a few cover-
age loss for some rules. 

RQ3 (reduced database size). Table 4 displays the size of all da-
tabases (both initial and reduced). The size of the databases is 
measured as the sum of the number of rows for all tables. We 
can appreciate a significant reduction factor that leads to very 
slight reduced databases. 

As the reduction is driven by the coverage rules, which in 
turn depend on the number of queries and their size and com-
plexity, the absolute size of the reduced database is not the best 
indicator for the effectiveness of the reduction. The last row in 
Table 4 displays the average number of rows taken from the in-
itial database that have to be inserted in the reduced database 
divided by the total number of covered rules. We can observe 
that these figures are small, ranging from 0.29 for the simplest 
queries (Helpdesk) to 2.39 for the more complex queries 
(TPCHg).  

6.4 Effectiveness at the application level (RQ4) 

The previous section showed the effectiveness related to cover-
age and mutation score for the queries involved in the reduction. 
If part of the application logic is embedded in queries, the out-
put of a single run of a test case will depend on the values re-
turned by the queries and on the decisions taken in the proce-
dural code. 

RQ4 (Effectiveness at the application level). To check this ques-
tion we prepared a set of test cases for the security check func-
tionality of the Helpdesk application. Security is the most critical 
functionality as the ability to access tickets and annotations de-
pends on many factors: 

 The logical database that the user has permission to ac-
cess, its organizational unit, the allowed ticket types 
and the previous annotations made on tickets. 

 Other user level parameters: restricting access to only 
own tickets or only tickets that belong to its organiza-
tional unit. 

 The transaction type (read, update, insert). 
The security checking has a single method as entry point plus 

3 auxiliar methods coded in Java containing 15 decisions. Dur-
ing the execution, the queries are dynamically constructed at 9 
places in the code in order to take the appropriate decisions 
based on the outputs produced by these queries. 

We designed and automated (with Junit) a set of test cases. 
The design of the test cases was made using a black-box ap-
proach taking into account the Helpdesk security requiere-
ments. From these security requirements we derived the test re-
quirements and then the test cases until all test requirements 
were met. As a result, we obtained a total of 31 test cases. Instead 
of creating a new test database for developing the test cases, we 
used the existing reduced Helpdesk database (Table 4). This task 
is fairly straightforward as the reduced database is small enough 
to manually find the records that represent each test require-
ment by browsing the existing ones.  

Next, the set of queries that were issued to the database when 
executing these test cases were used to perform a second reduc-
tion process of the initial database using these queries, leading 
to a second reduced database with 65 rows. The first two rows 
in Table 5 display the sizes of the databases as well as the num-
ber of ticket records contained in each database.  

The execution of the test cases against each of the test data-
bases leads to the same decision coverage. To evaluate the ap-
plication level effectiveness we performed a mutation analysis 
on the four Java methods under test using two different tools: 
MAJOR V1.1.6 [100][101] and muJava V4 [102]. Using each da-
tabase as the test database, the test cases were executed against 
each mutated version. The results are displayed in the last rows 
in Table 5. 

MAJOR generated less mutants that led to lower scores than 
muJava, as it is designed to maximize the efficiency of mutation 
analysis [103][104][105]. The tests executed using the initial da-
tabase achieve very similar or equal mutation score than the 
tests executed against reduced databases, regardless of the tool 
used to generate the mutants (58.6% using MAJOR and around 
85% using muJava). Moreover, with muJava the mutation score 
is slightly lower than 85% when using different databases than 

TABLE 3. COVERAGE AND MUTATION SCORE BEFORE AND AFTER 

 Compiere Helpdesk 

TPCHg 

(10MB) 

TPCHs 

(10MB) 

Number of mutants 192,851 65,666 4,835 3,069 

Mutation Score (initial) 86.3% 61.8% 81.2% 76.6% 

Mutation Score (reduced) 79.7% 61.5% 78.9% 70.0% 

Mutation Score difference -6.6% -0.3% -2.3 -6.6% 

Number of rules 1,762 1,341 145 119 

Coverage (initial) 58.3% 49.0% 63.4% 68.9% 

Coverage (reduced) 58.6% 50.5% 68.3% 71.4% 

Coverage difference +0.3% +1.5% +4.9% +2.5% 

Coverage Gain 6 20 7 4 

Coverage Loss 2 0 0 1 

TABLE 4. SIZE OF INITIAL AND REDUCED DATABASES 

 Compiere Helpdesk 

TPCHg 

(10MB)  

TPCHs 

(10MB) 

Size (initial) 127,200 137,490 86,805 86,805 

Size (reduced) 1,356 194 220 119 

Reduction Factor 1.07% 0.14% 0.25% 0.14% 

Rows per Covered Rule 1.32 0.29 2.39 1.45 

TABLE 5. MUTATION COVERAGE (APPLICATION LEVEL) 

 

Initial  

database 

Reduced  

database 

Reduced  

database (2nd) 

Size (number of rows) 137,490 194 65 

Num. of ticket records 22,387 31 10 

Decision coverage 100% 100% 100% 

Num. of mutants (MAJOR) 70 70 70 

Mutation score (MAJOR) 58.6% 58.6% 58.6% 

Num. of mutants (muJava) 320 320 320 

Mutation score (muJava) 84.4% 85.6% 84.2% 



14 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,  MANUSCRIPT ID 

 

the one used to build the test cases (the reduced database). The 
reason is that some mutants result in modifications on part of 
the SQL generated by the program (e.g. by removing a clause). 
On a few occasions these mutants remain live when executed 
against different databases. Nevertheless, the score for mutants 
that modify other parts of the application logic is the same across 
all test databases.  

6.5 Efficiency (RQ5 and RQ6) 

RQ5 (Scalability). To check the scalability of the reduction 
with respect to the size of the database we generated a set of 
TPCH databases using several scale factors, leading to 5 Oracle 
databases ranging from 10 MB to 100GB (each database multi-
plies the size of the previous by 10). This leads to databases rang-
ing from 86,805 to 865,860,820 rows. We also repeated several 
runs using all the optimizations that limit the size of the reduc-
tion relation (Section 5.2) by limiting the number of tuples to 10, 
100 and 1,000, as well as not using any limit (NoLim). 

Figure 8 displays the coverage of the initial and reduced da-
tabases. In general, the coverage is slightly larger for the reduced 
databases than for the initial database. The increase is smaller as 
the limit of the size of the reduction relation is also smaller, due 
to the fact that fewer rows that have been covered by previous 
rules are reused. 

Table 6 displays the details of coverage gains and losses. For 
Compiere and Helpdesk the gains and losses do not change sig-
nificantly with different optimization parameters. For TPCHg 
and TPCHs there are differences for different scaling and opti-
mization parameters:  Coverage gains are in a range from 3 to 9 
without a defined pattern. The coverage losses range from 0 to 
5 with a strong dependency on the optimization parameters. 
Consider the worst case (database with 100GB and limiting the 
frame to 10 rows). Using the initial database some frames are 
composed by many thousands of rows. Selecting only ten of 
them increases the probability of not fulfilling the select predi-
cates after the frames, causing the coverage losses. There is a 
compromise on the loss of effectiveness caused by these kinds 
of optimization and the efficiency improvement that will be 
shown later. However, in most cases losses are small and in this 
worst case losses compensate the gains. 

Figure 9 depicts the size of each database after the reduction 
(measured as the total of rows in all tables). The size slightly in-
creases with the optimizations and it is fairly independent from 
the size of the database for the largest ones (TPCH with 1GB to 
100GB). This leads to a high efficiency of the reduction with little 
dependency on the size of the initial databases and the optimi-
zations, showing very large reductions measured in the percent-
age of rows that are kept in the reduced database (up to 
0.000035% for TPCHg and 0.000017% TPCHs).  

RQ6 (Performance). To check the performance with respect to 
the size of the database and the optimizations, we repeated sev-
eral runs using the optimizations presented in Section 5.3 (Seq 
means sequential and Par means parallel) as well as the row lim-
its used in the previous section. 

Figure 10 depicts the total time spent in the reduction in log 
scale. The figure shows how the time performance scales with 
the database size for TPCH. The relation of time spent when re-
ducing each database with respect to the previous one (consid-
ering data for Seq) is 4.8, 10.8, 10.9, 13.4 for TPCHg and 5.0, 11.8, 
11.5, 12.3 for TPCHs. As each database multiplies the size of the 
previous one by a factor of ten we can see a near-linear growth 
of the time with respect to the size. 

A reduction rule is generated by transforming a coverage rule 
which in turn is generated by transforming the original query. 
In order to compare times across different databases and differ-
ent sets of queries we normalize the execution times with respect 
to the original query. Figure 11 depicts the average time spent 
per reduction rule divided by the average time spent per origi-
nal query. 

Normalized times are between 1 and 3.5 across all databases 
(Seq). Considering the results for TPCH, the normalized execu-
tion times are very similar, but this value suddenly rises for the 
largest database (100GB) and this effect occurs early in TPCHs 
(10GB) which contain subqueries. This is caused by the addi-
tional joins needed to reveal the base keys as well as the amount 
of RAM memory available to the database server. Up to TPCH 
1GB data needed for processing the query has enough room to 
be kept in RAM and then the reduced queries run faster. For 
larger database sizes the memory may not be sufficient and sec-
ondary storage (temporary space) has to be used, penalizing the 

TABLE 6. SQLFPC COVERAGE GAINS - LOSSES 
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Figure 9. Size of each database after reduction (number of rows inserted 
in the reduced database). *The number of rows for Compiere has been 
divided by ten. 

0

50

100

150

200

250

300

350

400

To
ta

l n
u

m
b

er
 o

f 
ro

w
s NoLim Lim/1000

Lim/100 Lim/10

40,0%
45,0%
50,0%
55,0%
60,0%
65,0%
70,0%
75,0%
80,0%
85,0%
90,0%

%
 F

P
C

 C
o

ve
ra

ge

Initial NoLim Lim/1000 Lim/100 Lim/10



TUYA ET AL.:  COVERAGE-AWARE TEST DATABASE REDUCTION 15 

 

performance. The effect of optimizations that limit the number 
of rows strongly decreases these times, the decrease being 
higher for the largest databases, keeping the normalized execu-
tion time near or below 1. This effect is similar for Compiere and 
Helpdesk databases, but not so pronounced. 

Parallelizing also has a strong influence on the performance 
by reducing roughly by half (on most occasions) the execution 
times. The benefits of optimizations are larger for the biggest da-
tabases. The greatest improvement is for TPCHs 100GB which 
has a normalized execution time of 3.43 (sequential without row 
limits) that decreases to 0.40 (parallel with row limit 10) which 
means that overall reduction time decreases by 11.7%. 

7 THREATS TO VALIDITY 

Results from the above study show a high degree of reduc-
tion of the databases while preserving most of the coverage with 
a suitable performance and scalability. Transformation rules 
cover many of the typical SQL constructs and their combina-
tions, and are fully automated. The criterion is white-box based, 
therefore, the typical usage scenario of the approach is mainly 
driven towards maintenance or reengineering as it requires a set 
of queries and enough data to be loaded in the database to be 
reduced. However, there are several issues that may threaten the 
validity of these results, which are discussed below. 

First, the reduction is driven by the SQLFpc coverage. There 
is no guarantee that the test requirements embodied in the crite-
rion are the best suited for testing SQL queries, but as it is based 
on the principles of MCDC it is more likely that they are reason-
ably adequate for determining a number of interesting situa-
tions to test. 

Second, the coverage of the reduced database is not always 
the same as the initial database, although the variations shown 
before are small. On some occasions the coverage increases (cov-
erage gain). On others there is a possibility that rules covered 
against the initial database, become uncovered over the reduced 
database (coverage loss). The frame reduction procedures use an 
approach to reduce frames which is not intended to find an op-
timum, but a small enough frame, and under some circum-
stances it may fail to find a solution. In this case, the bigger the 
database is (containing more frames), the more likely it is to find 
at least a small enough reduced frame. As shown before, the ef-
fect of coverage losses is present, however, it has been observed 
for a small percentage of coverage rules as most of them are ad-
ditive, i.e., adding rows to cover a rule does not prevent other 
rules from being covered. 

Third, the approach of the reduction is based on the coverage 
at the query level. This is well suited for reporting when most of 
the application logic resides in the queries, but in general does 
not guarantee the coverage of the procedural code of an appli-
cation. The more application logic is embedded in the queries 
and the simpler decisions based on the queries are, the more 
likely it is that coverage of the procedural code be kept because 
the reduced database has considered the coverage of the logic 
embedded in the query. This has been considered in the evalua-
tion of the effectiveness at the application level, although the 
manual design of the test cases as well as the kind of application 
used, is another threat to validity. Another potential problem is 
that coverage of the queries may be modified by previous 
changes to the data made by the program. It is important to note 

that the reduced database is intended to be a starting point for 
testing, but the tester may need to insert additional data for test-
ing particular situations. 

Fourth, although many combinations of SQL clauses have 
been considered, the total number of combinations is potentially 
infinite meaning that a reduction transformation may fail for 
some rules, leading to uncovered rules. To mitigate this effect 
the automation has been thoroughly tested.  

Finally, the study is limited to three applications, so the re-
sults may not generalize to other applications. However, these 
are real-life applications that use SQL to process some logically 
complex queries (in Helpdesk, related to the access security and 
in Compiere ERP, the set of views on the basis of which all other 
queries of the application are constructed). Additionally the 
TPCH is an industry benchmark for testing the performance of 
complex queries. 
 

8 CONCLUSION 

We have presented an approach for the reduction of test da-
tabases that takes a set of SQL queries and an initial database, 
and produces a reduced test database that preserves the SQLFpc 
coverage. The approach is able to handle complex queries cov-
ering a large set of SQL constructs and their combinations.  

The results showed that a high degree of reduction can be at-
tained with few coverage losses and some coverage gains. Ad-

 

Figure 10. Total time (seconds) spent in the database reduction (depicted 
in Log scale) 

 
Figure 11. Normalized execution time spent in the database reduction 
(average reduction time per rule divided by the average execution time 
per query) 
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ditionally, it is scalable in relation to the size of the initial data-
base and the reduction time. Moreover, the whole approach to 
the reduction of a database is fully automated and some optimi-
zations are included.  

The typical target scenario is composed by applications that 
rely on SQL queries for processing complex business rules. A 
reduced test database may be created for testing or developing 
specific queries, leading to a starting point of the test database 
to complete the tests. When considering the whole application, 
a large set of queries may be extracted from the database logs in 
order to create a reduced database covering these queries, which 
in turn may be used as a starting point for completing tests or 
performing other maintenance operations. This is the first po-
tential benefit of the approach that contributes to a reduction of 
the time spent on the task of creating test databases. A second 
potential benefit is to allow a decrease of the times of loading 
test databases, while keeping a representative set of data to ex-
ercise the queries of the applications, leading to faster test exe-
cution. Additionally, having small test databases contributes to 
make the task of checking the actual results easier when devel-
oping and testing queries, contributing to a faster and more re-
liable test results comparison. 

Our future work will concentrate on two areas. First, to com-
plete the evaluation and practical use at the application level to 
include the ability to reduce test databases into the developer 
and tester workflows. This will imply testing how the reduction 
performs using other DBMS. Second, to use the reduction prin-
ciples to address NoSQL databases in order to provide support 
for testing in the context of the development of applications that 
manipulate data using these technologies.  
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