
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID 1

Coverage-Aware Test Database Reduction
J. Tuya, Member, IEEE, C. de la Riva, M.J. Suárez-Cabal, R. Blanco

Abstract—Functional testing of applications that process the information stored in databases often requires a careful design of the test

database. The larger the test database, the more difficult it is to develop and maintain tests as well as to load and reset the test data. This

paper presents an approach to reduce a database with respect to a set of SQL queries and a coverage criterion. The reduction procedures

search the rows in the initial database that contribute to the coverage in order to find a representative subset that satisfies the same

coverage as the initial database. The approach is automated and efficiently executed against large databases and complex queries. The

evaluation is carried out over two real life applications and a well-known database benchmark. The results show a very large degree of

reduction as well as scalability in relation to the size of the initial database and the time needed to perform the reduction.

Index Terms—Test database reduction, Test coverage of code, Test design, Testing tools

—————————— ——————————

1 INTRODUCTION

ATABASE applications involve the management of large
amounts of data stored and organized in many tables.
These data are usually managed using a third party com-

ponent called the Database Management System (DBMS) that
provides high performance and a high degree of scalability and
dependability. The application is able to access the stored data
using some kind of query language. Despite the continuous de-
velopments in new technologies such as NoSQL databases [1]
and persistence systems, applications handling the data using
Relational DBMS and the Structured Query language (SQL) [2]
are ubiquitous in virtually all industrial and business sectors.

Testing software applications involves a crucial activity that
consists of elaborating test cases, each having sets of test case
preconditions, inputs and expected outputs [3]. The tester has to
provide enough meaningful inputs in order to exercise the ap-
plication code as much as possible. If the application involves a
database, the elaboration of test databases is a determining fac-
tor. On some occasions, the test database may be by far the most
important component of the input (such as reports, analytical
queries or dashboards).

Creating a test database involves a number of technical and
practical challenges. The test database should contain enough
meaningful data to adequately exercise the application under
test. However, populating the test database becomes a difficult
task because of the highly interrelated nature of tables. Test da-
tabases should be kept small in order to facilitate: 1) the effi-
ciency of the reset of the test database, 2) the fault localization
and debugging of failed tests, 3) the test output evaluation when
a test produces many outputs from the database, and 4) the
maintenance and extensibility of test scripts.

Consider, for example, the following scenario: A database
contains orders made by clients. Each order has the information
about the client and the warehouse that will supply the goods.
This information is stored in a main table (order) with the order
ID (oid), client ID (cid), warehouse ID (wid) and the order status.

The warehouse table includes its ID (wid) and its name. A new
reporting module is under development and one of the reports
consists in displaying all cancelled orders (status=’C’) and the
warehouse name. The developer creates the report based on the
following query:

SELECT o.oid, o.status, c.cid, w.name
FROM order o, warehouse w
WHERE o.wid=w.wid AND o.status=’C’

The test requirements for this report include creating test da-
tabases with orders with status ‘C’ and other different statuses.
In addition, as the warehouse is assigned after entering an order,
there must be orders in the test database that have been can-
celled before and after the assignment of a warehouse.

Creating test databases needs a trade-off between the quality
of the data from the testing point of view and practical issues
related to populating and loading the test database. The tester
may adopt different strategies that range from 1) beginning
from a previously populated database (e.g. a copy of the pro-
duction database) to 2) beginning from an empty database.

If testing is done using a production database, the actual re-
sults have to be checked over many rows in the report to ensure
they meet the specification. In particular it should be checked
that all reported rows are included and there are no omitted
rows. In this case the query is wrong as it ignores cancelled or-
ders that do not have a warehouse assigned yet. The source of
the fault in the query is that the join between tables should be a
left join. It should be written as:

SELECT o.oid, o.status, c.cid, w.name FROM order o
LEFT JOIN warehouse w ON o.wid=w.wid
WHERE o.status=’C’

Moreover, if the test is further automated, its execution will
require a reset of the database to isolate this test from others that
modify the database, which is more time consuming as the size
of the database grows.

The second strategy is to start from an empty database. The
tester is free to create a script to populate a test database con-
taining only the rows that fulfill the test requirements. The com-
parison of the actual results is easier as fewer rows at the output
have to be checked and the reset of the database is faster. How-
ever, the tester has to specify each row and its values (including
all columns in the tables involved, which are simplified in the

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

————————————————

 The authors are from the University of Oviedo, Campus Universitario de
Gijón, Dpto. Informática, 33204 Gijón, Spain.
E-mail: {tuya,claudio,cabal,rblanco}@uniovi.es.

D

© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current
or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective
works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

This is a preprint version to be published in IEEE Transactions on Software Engineering

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

example) and to populate additional tables to ensure referential
integrity.

An intermediate strategy that constitutes a trade-off between
the above would consist of extracting a subset of the data that
fulfills the test requirements from the production database and
generating a script to populate the test database with this subset.
This is a reduction of the production database. If it is made au-
tomatically, this would facilitate the testing as it contains few,
but meaningful data (that cover the test requirements of the
query). It would be easier to check the actual results (they con-
tain fewer rows) and easier to populate and load the test data-
base (the script would be automatically created).

The scope of this paper relates to this intermediate strategy:
Given a database, produce a smaller database containing mean-
ingful data to enable its use as a test database. To accomplish
this, 1) we start from an initial database (that can be taken from
a production database after obfuscating confidential data) and a
set of queries that have been issued to the database (which can
be taken from the execution log registered by the DBMS). 2) In
order to be able to select meaningful test data from the initial
database we use a test criterion called SQL Full Predicate Cov-
erage (SQLFpc) [4] which is a variant of Modified Condi-
tion/Decision Coverage (MCDC) [5], [6] specifically tailored for
SQL. Given a SQL query and a test database, the SQLFpc crite-
rion defines a set of test requirements, each represented as a cov-
erage rule (written as a SQL expression). The execution of the
rules against the initial database determines whether the test re-
quirements for the query are met. 3) Then the data which satisfy
each coverage rule are retrieved, reduced to a subset and in-
serted into another database (initially empty) which constitutes
the reduced test database.

While our prior work on test database reduction [7] deals
with tool support for a very limited kind of queries, this work
largely expands the applicability of the approach to more com-
plex queries and provides a thorough assessment of the results.

The specific contributions of this work include:
1. The definition of a set of reduction rules and reduction pro-

cedures which allow a) to determine the tables and rows
from the initial database that satisfy each test require-
ment (represented by coverage rules), and b) to select a
small set of them in order to guarantee that test require-
ments are also met in the reduced database. The reduc-
tion procedures perform a search on the initial database
to select a subset based on cost and fitness functions.

2. The approach is able to handle a large set of SQL syntax,
including the main clauses (SELECT, JOIN, WHERE,
GROUP BY, HAVING) as well as subqueries and views.

3. Several optimization strategies allow decreasing the total
time needed to reduce the database by parallelizing dif-
ferent tasks and reducing the number of rows that need
to be retrieved from the database.

4. The reduction preserves the coverage in most cases, the fi-
nal size of the reduced test database is generally inde-
pendent from the size of the initial database and the ap-
proach is scalable. This has been checked in three case
studies (two of them are taken from real-life applications
and the third from a synthetic benchmark).

The remainder of the paper is structured as follows: Section 2
provides background and related work on test reduction, rela-
tional models, database testing as well as the basic notation and

the concept of coverage. Section 3 formulates the database re-
duction problem. Section 4 presents how to elaborate the reduc-
tion rules and procedures for different types of queries and Sec-
tion 5 deals with optimization issues. Section 6 evaluates the ap-
proach and Section 7 discusses the main results. Finally, Section
8 concludes.

2 BACKGROUND AND RELATED WORK

2.1 Test Suite Reduction

A number of different approaches have been studied in the past
in the field of regression testing to maximize the value of a given
test suite: minimization, selection and prioritization [8]. 1) Test
suite minimization seeks to eliminate redundant test cases in or-
der to reduce the number of tests to run, 2) Test case selection
seeks to identify the test cases that are relevant to some set of
recent changes, and 3) Test case prioritization seeks to order test
cases in such a way that early fault detection is maximized.

Test suite minimization is often called test suite reduction.
Rothermel et al. [9] formulate the problem as follows:

Given: Test suite T, a set of test-case requirements r1, r2, ... , rn
that must be satisfied to provide the desired test coverage of the
program, and subsets of T, T1, T2, ... ,Tn, one associated with each
of the ri’s such that any one of the test cases tj belonging to Ti can
be used to test ri .

Problem: Find a representative set of test cases from T that sat-
isfies all ri’s.

Many algorithms and empirical studies related to the above
test regression problems have been published during the last
few decades, as well as some comprehensive reviews [8], [10].
One of the most important concerns on test suite reduction is
whether a minimized test suite preserves the fault detection abil-
ity that the original test suite had. In this sense the empirical
studies have not been conclusive. Wong et al. reported a de-
crease in fault detection ability of 1.45% in the worst case using
10 Unix programs [11] and 7.28% using a larger real-life pro-
gram (space) [12]. However other studies found different fig-
ures. Rothermel et al. found a decrease in fault detection ability
of over 50% [13] using the Siemens Suite. Using the space pro-
gram they found 8.9% [14]. If the test suites are randomly gen-
erated the decrease is larger (18.1%). These figures depend on a
great number of factors such as the programs themselves, how
the test cases and test suites have been obtained and the kind of
faults that are considered [8].

In this paper we deal with a similar problem to the test suite
minimization, but, instead of obtaining a reduced test suite, we
seek to obtain a reduced test database.

2.2 The Relational Model

The relational model was first developed by Codd [15] and de-
fines the foundations of data storage and querying that is imple-
mented in today’s commercial relational database management
systems. The notation used in this paper is that presented by the
author in the second version of the relational model [16], re-
ferred to as RM/V2, with some adaptations needed for subse-
quent sections.

Relations and attributes: Given a set A of attributes A1, …, Am,
a relation R is a subset of the Cartesian product of their domains,
denoted as R(A1, ... Am) or simply R(A) or R. In other words, a
relation R(A) is a set of tuples of the attributes in A. In SQL a

TUYA ET AL.: COVERAGE-AWARE TEST DATABASE REDUCTION 3

relation is a table or view, attributes are columns and tuples are
rows. For each relation one or more attributes are primary keys
which uniquely identify each tuple in this relation. The domain
of attributes includes special marks to reference missing or in-
applicable attributes which are indicated as NULL in commer-
cial relational DBMS. This leads to a three-valued logic of pred-
icates.

The basic operations in the RM/V2 transform either a single
relation or a pair of relations into another relation. Operators are
defined using relational assignments: A relational assignment is
in the form Zrve where rve denotes a relation-valued expression
(RVE) and Z is the name of the relation obtained when applying
the relation-valued expression. In SQL an RVE is called a query.
The basic relational operators are shown below:

Selection: Select operator Z R[p(A)] generates as a result a
relation Z which contains the complete tuples from relation R
that fulfill the predicate p on attributes A. Its SQL expression is:

SELECT * FROM R WHERE p(A)
Projection: Project operator Z R (A’) generates a relation Z

which contains only the subset of attributes specified in A’A.
Its SQL expression is:

SELECT A’ FROM R
Joins: The join operator Z R[p(A,B)]S generates a relation

that contains tuples of R(A) concatenated with tuples of S(B), but
only where the condition specified by predicate p(A,B) is found
to hold true. The predicate p is named join predicate. Its SQL ex-
pression is:

SELECT * FROM R INNER JOIN S ON p(A,B)
The above is also called inner join. When the outer increment
(tuples from a relation that do not fulfill the join predicate) is
added to the resulting relation, the join is called outer join. De-
pending on the relation that is considered in the outer increment
(R, S or both) the join is called left outer, right outer or full outer
join, respectively. These joins will be denoted as R[p(A,B)]JTS,
where JT is a label {L, R, F} that denotes the join-type.

Framing: The framing operator Z R /// G partitions a rela-
tion into a collection of subrelations (groups), such that each of
them has equal values for a set of attributes G named grouping
attributes. The most commonly used is in the form Z R /// G
(G,F) which performs aggregated calculations over all tuples on
each frame. These calculations are performed by aggregate func-
tions (denoted by F). Its SQL expression is:

SELECT G,F FROM R GROUP BY G
A further select operator may be applied after framing: Z R
/// G [q(G,F)] (G,F). Predicate q(G,F) involves grouping attributes
and aggregate functions over A. It is called frame predicate, which
is represented in SQL by the HAVING clause:

SELECT G,F FROM R GROUP BY G HAVING q(G,F)

2.3 Test Coverage for Database Applications

Test coverage criteria for database applications include fault-
based and flow/logic-based. In the fault-based category the ex-
isting works range from the development of sets of mutants for
SQL queries [17], [18] or schemas [19], [20], [21] to the evaluation
of the fault-detection effectiveness with tools [22], [23], [24], [25],
fault-localization [26] and empirical studies [27]. Others are ap-
plication specific, mainly with the goal of detecting SQL injec-
tion vulnerabilities [28], [29], [30] and preventing them [31].

In the flow/logic-based category some criteria are based on
data-flow [32], [33] as well as tools to automate the approach

[34]. These criteria have also been used in the context of active
databases [35]. Logic-based criteria incorporate a notion of mul-
tiple condition coverage [36], [37], define a hierarchy of criteria
to test schema constraints [38] or focus on how the SQL strings
containing the query to be executed are constructed by the pro-
gram [39]. The SQLFpc criterion [4] mentioned in the introduc-
tion belongs to this category. As this paper will make use of this
criterion the rest of this subsection provides a brief summary.

MCDC [5], [6] is a coverage criterion that specifies test re-
quirements consisting in that every condition in a logical deci-
sion has taken all possible outcomes at least once, and each con-
dition has been shown to independently affect the decision’s
outcome. It is also called Active Clause Coverage [40][41]. Based
on this principle, SQLFpc provides a criterion tailored for the
specific features of SQL, where the test inputs are the database
and the programs are SQL queries. In addition to conditions in
WHERE and HAVING clauses, the SQLFpc criterion deals with
the way in which SQL queries perform the joins, groupings and
aggregations, as well as the handling of the three-valued logic.

Given a SQL query, SQLFpc specifies a number of test re-
quirements that impose a set of constraints on the test database
in order to achieve the coverage, which are called coverage rules
(). Coverage rules are obtained by applying coverage rule trans-
formations () to the query [4] and are expressed as SQL queries.
The evaluation of SQLFpc coverage against a previously popu-
lated database is obtained by executing each rule (query) against
the database. If the output is not empty (it obtains at least one
row), it means that the test requirement embodied in the rule is
fulfilled. The approach for reduction presented in this paper will
take these outputs and will try to obtain a subset of rows from
the initial database that produces a non empty output.

2.4 Testing Database Applications

Most of the previous work on testing database applications fo-
cuses on generating either the sets of test inputs or the test data-
base. The AGENDA tool [42], [43], [44], [45] is loosely related to
the category-partition method and uses heuristics to fill the test
database. Different criteria may be used to populate the data-
bases. Some of them may take the form of intensional specifica-
tion by specifying constraints in a SQL-like language [46], [47]
or be based on reverse query processing [48] which uses the de-
sired output as extensional specifications to generate the inputs
or SQL rules in the form of intensional specifications [49].

Other approaches directed towards test data generation use
different kinds of constraint solvers to either generate test inputs
or populate the test database. With the goal to test SQL queries,
some works address the test database generation by imposing
constraints on the database statements using different test crite-
ria, such as predicate coverage [50], [51], [52], mutation coverage
[53], [54] or the SQLFpc criterion [55]. Constraint-based ap-
proaches are also explored to test database programs. These ap-
proaches track symbolic constraints from the procedural code
and the embedded SQL queries and then use these constraints
in conjunction with a constraint solver to generate program in-
puts [56], [57] or both program inputs and test databases [58],
[59], [60]. Search based techniques have also been used to gen-
erate test databases considering schema constraints [61].

Although most of the existing work deals with the generation
of test cases, other issues such as debugging and regression test-
ing have also been handled. These include the reproduction of

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

problems [62][63], removing redundant tests [64], obtaining the
execution order of a given test suite in order to reduce the num-
ber of resets of the test databases [65], [66], [67] or the selection
of test data for regression [68], [69], [70]. While these regression
approaches are typically white-box oriented, as they take
knowledge from the internals of the applications, other black-
box approaches [71], [72] perform test selection based on a Clas-
sification Tree Model used as specification. The closest work to
our work [73] shares our goal to obtain a reduced database from
an initial database. Given a set of single-table SQL queries and a
fixed size of the reduced database, after generating a set of mu-
tants [17] for all queries, it performs a search on the initial data-
base using genetic algorithms. The result is a reduced database
that has a similar mutation score to that of the initial database.

Reverse query processing [48] generates the inputs that pro-
duce a given output for a query. A related problem is to obtain
the existing inputs that produce a given output, which is called
data provenance or lineage [74][75][76]. This has a number of
applications that range from scientific workflows [77] to tracing
data warehouse transformations [78] or Big Data [79]. The clas-
sification of different approaches depends on how we define
that an input contributes to the output (contribution semantics).
An initial classification is between why and where provenance
[80]: the former refers to the source data tuples that had some
influence on producing the output, while the latter refers to the
location in the input (attributes) from which the data is ex-
tracted; refer to [81] for a comprehensive classification and over-
view of different approaches.

Data lineage has been computed by defining a set of tracing
queries over the source data of data warehouses [82][83]. The
closest to our work is the Perm System [81][84][85][86] that ex-
tends the PostgreSQL DBMS and rewrites queries to obtain a
provenance query that determines the source data. The reduc-
tion rules described in this paper also compute the source data
for the coverage rules, but the implementation does not depend
on a given DBMS and adds additional information needed to al-
low the reduction procedures to select a subset of the source
data.

This article shares some goals with most of the aforemen-
tioned works although it also pursues additional objectives: 1)
to generate a test database (reusing an existing database instead
of generating its data from scratch), and 2) to reduce the size of
the tests (reducing the size of the test database instead of reduc-
ing the size of the test suite).

3 PROBLEM STATEMENT

Section 2.1 formulated the general problem of test suite reduc-
tion. It relies on a set of test requirements that must be satisfied
by both the original and the reduced test set. Usually, these test
requirements are stated in terms of some structural test coverage
criterion (e.g. individual decisions made by branches in the pro-
cedural code). If the program uses a database, part of the deci-
sions taken in the code depend on the result of queries executed
against the data stored in the database. Therefore, part of the ap-
plication logic is embedded in the SQL queries that access the
database. The extreme case is an application intended for report-
ing, in which most of the logic relies on the SQL instead of the
procedural code. In this case, the goal is to reduce the size of the
test data, instead of the number of test cases. The ideal situation

would be to include test requirements related to both the queries
and the procedural code of the program, and then perform the
reduction of the test suite and the amount of data stored in the
test database. This paper focuses on the second of the aforemen-
tioned cases: the reduction of the test database.

The output produced by a SQL query depends on the deci-
sions taken in the query (e.g. WHERE clauses) as well as other
clauses (e.g. the different types of joins). The SQLFpc coverage
criterion [4] defines a set of test requirements to exercise a query.
Each requirement is also represented by a SQL query (coverage
rule). When a coverage rule is executed against a given database,
it produces a number of rows. Each row has been obtained from
a subset of data that fulfills the test requirement (i.e. covers the
rule). Therefore, it is enough to obtain a single row at the output
to ensure that the test requirement is met. This will be the basis
for the database reduction as if we obtain the subset of the data-
base that produces a single row at the output of the coverage
rule, this subset will constitute a reduced database for that test
requirement.

In terms of the scope of this paper the reduction problem is
focused on the database and the queries that are executed by a
program. In this problem, the test suite is the set of tuples in a
database, the program is a set of SQL queries and the test re-
quirements are determined by a set of coverage rules obtained
by applying the SQLFpc coverage criterion (Section 2.3) to the
queries under test. Taking into account the above considera-
tions, the reduction problem is reformulated as:

Definition 1 (Test Database Reduction Problem). Given: An ini-
tial database D, a set {Qj} of RVEs (SQL queries), a set of SQLFpc
coverage rules {i}=(Qj) that are covered when evaluated
over D where (Qj) denotes the set of coverage rules for Qj, and
the subsets of D, D1, D2,… Dn, one associated with each of the
i’s such that any one of the Di covers the rule i.

Problem: Find a reduced database D’ which contains a repre-
sentative set of tuples from every Di such that tuples from Di
cover the rule i and every coverage rule i is covered when
evaluated over D’.

Coverage gain and loss. The test suite reduction problem (Sec-
tion 2.1) and the test database reduction problem (Definition 1)
have a significant difference: Test cases Tk in test suite reduction
are independent. Adding a test case never decreases the require-
ments coverage. However, subsets Di in test database are not in-
dependent. A single tuple may be shared by several Di causing
a situation where adding tuples could uncover some require-
ment previously covered (coverage loss). For example, if a re-
quirement sum(a)<3 is covered and then we try to cover
sum(a)≥3, the first requirement will become uncovered when
adding tuples to cover the second one. The contrary may also
occur (coverage gain), for example, in the case of outer joins.
These issues will be discussed in further sections.

The primary purpose of the test database reduction described
here is to provide a starting point of a test database in order to
facilitate the reset of the test database, the fault localization and
debugging of failed tests, the test output evaluation and the
maintenance and extensibility of test scripts. This will help the
tester to develop, complete or automate functional tests.

Therefore, the purpose is to achieve a reasonably good solu-
tion in terms of coverage and size of the reduced database, alt-
hough coverage may not be exactly the same as the initial data-
base for a few rules.

TUYA ET AL.: COVERAGE-AWARE TEST DATABASE REDUCTION 5

Approach: In general, the approach to produce a reduced da-
tabase is based on:

1. The definition of reduction transformations () that pro-
duce reduction rules () from the coverage rules (). Re-
duction rules are RVEs that compute the provenance of
the coverage rules when evaluated over the initial data-
base.

2. The definition of reduction procedures for selecting a small
number of tuples from those obtained by the evaluation
of the reduction rule. These tuples are going to be added
to the reduced database.

After executing the reduction procedures for each reduction
rule , the set of all resulting tuples plus additional tuples
needed to enforce the referential integrity are copied to the re-
duced database (initially empty).

4 REDUCTION RULES AND PROCEDURES

This section details how the coverage rules are transformed into
the reduction rules and how tuples resulting from the evalua-
tion of the reduction rule are selected to obtain the reduced da-
tabase. Firstly, we cover the most basic operators (Section 4.1),
followed by frames (Section 4.2) and subqueries (Section 4.3). Fi-
nally, we summarize how all of them are combined (Section 4.4).

4.1 Join and Select Operators

The case of an RVE (query) that performs joins and a further se-
lection of joined tuples is the simplest one and allows the presen-
tation of the foundations of the reduction approach. We first il-
lustrate it with an example.

Example 1. Consider an initial database D={R,S} which con-
tains two relations R(A0,A1) and S(B0,B1,B2), being A0 and B0
primary keys and an RVE which represents a coverage rule
defined as:

 := R[A0=B1]S [A1<14] (A1,B2)
In SQL: SELECT A1, B2 FROM R INNER JOIN S ON

R.A0=S.B1 WHERE R.A1<14
The reduction problem as stated in Section 3 consists in se-

lecting a subset D’D (i.e. subsets R’R and S’S) such that is
covered when evaluated over D’ (reduced database).

Figure 1 depicts the global approach for this example: Start-
ing from a query Q a coverage rule is obtained by applying a
coverage rule transformation [4]. By evaluating the coverage
rule over D, a relation Z is produced. The coverage rule is cov-
ered iff Z contains at least one tuple (as this means that there is

some subset of data that satisfies the requirement specified by
the coverage rule). Therefore, every subset D’={R’, S’} that pro-
duces at least one tuple of Z after evaluating the coverage rule
over D’ is a reduced database. These subsets are obtained by ex-
ecuting a reduction rule and a reduction procedure as shown
below.

Reduction transformation and reduction rule. A reduction trans-
formation () transforms an RVE (coverage rule) into a reduction
rule () in such a way that relation Z’ obtained after evaluating
 over D allows identifying all source tuples of D. In the exam-
ple, this is accomplished by including the primary keys in the
projection. The result is a new RVE called reduction rule.

 := R[A0=B1]S [A1<14] (A0,B0,A1,B2)
In SQL: SELECT A0,B0,A1,B2 FROM R INNER JOIN S ON

R.A0=S.B1 WHERE R.A1<14
Definition 2 (Reduction transformation for joins with select). Let

:= R[p(A,B)]JTS[q(A,B)] be a coverage rule which joins tuples in
relations R(A) and S(B) (called source relations) and then selects
some of the resulting tuples according to a predicate q. The re-
duction transformation is the same as including a projection
on all attributes A,B:

 JT() := (A,B) (1)

Then the reduction rule is =JT(). Primary keys of all relations
in are called source keys.

Reduction procedure. A reduction procedure selects a small
subset of tuples of Z’ and finds the source tuples in D to ob-
tain the reduced database D’={R’, S’}. The reduction procedure
must use some kind of strategy in such a way that the reduced
database is as small as possible. This is based on the cost of add-
ing each tuple of Z’ to D’ measured in terms of the number of
new tuples that have to be added to the reduced database. In
Example 1, as can be seen in Figure 1, Z’ contains two tuples.
Either of them will produce tuples in R’ and S’ with cost 2. Each
of them may be selected (for example, the first tuple of Z’ in the
figure). The reduction procedure is incremental, being executed
for each coverage rule, so that it takes into account tuples that
are already in the reduced database. For example, if a tuple with
A0=3 already exists in D’, the cost of the second tuple in Z’ will
be 1 (a lower cost) as only one new tuple with B0=2 would need
to be added to the reduced database.

Definition 3 (Reduction procedure for joins with select). Let {i} be
a set of reduction rules, D={Rj} the initial database and D’={Rj’}
the reduced database (initially empty). Let zi

k be the kth tuple of
the relation obtained after evaluating Z’ii and source(zi

k) the
set of tuples in D that are determined by the primary key values
that are in zi

k (source relation). Let cost(zi
k,D,D’) be an integer ex-

pression which counts the number of tuples in source(zi
k) that are

in D, but are not in D’.
The reduction procedure follows the algorithm in Figure 2:

Each coverage rule i is transformed into the reduction rule i
and evaluated against the initial database D. Then for each tuple
zi

k the set of source tuples producing the minimum cost is con-
sidered the best solution and added to the reduced database D’.

Coverage gain and loss: As the reduction procedure only adds
tuples to the reduced database at each step, when a query has
only selection and join operators, there are no coverage rules
that are covered at some step and become uncovered at a later
step (coverage loss). However, the opposite is not true: a rule
that is not covered in the initial database may become covered

Figure 1. Example of database reduction for simple queries with joins

1
122
11

A0 A1
R

133

1
32
2

B0 B1
S

43
22
21
B2

23

12
2213
21

A1 B2
Z

144

2
23
1

A0 B0
Z’

12
2213
21

A1 B2

122
A0 A1
R’

1 2
B0 B1
S’

21
B2

Coverage
Rule ()

Reduction
Transf. ()

Reduction
Rule ()

Reduction
Procedure

Coverage Rule
Transf. ()

Query
(Q)

 := R[A0=B1]S [A1<14] (A1,B2)
 := R[A0=B1]S [A1<14] (A0,B0,A1,B2)

D

D’

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

in the reduced database (coverage gain). This is the case of rules
with outer joins: Initially, master relations may have at least one
related row in their detail, so, rules that require a master without
any detail are not covered by the initial database. However, as
the reduction process selects only a few rows from the initial da-
tabase, the reduced database may contain situations in which
there is a row in a master table without any related row in the
detail, leading to a coverage gain.

4.2 Framed Relations

Consider a coverage rule that contains a framing operator:
 := R///G [q(G, F)] (G,F)

In SQL: SELECT G,F FROM R GROUP BY G
HAVING q(G,F)

Where the grouping attributes G are attributes of R and F are
aggregate functions on the attributes of R. The approach is illus-
trated below with an example.

Example 2. Consider an initial database D={R} with a single
relation R(A0,A1,A2), being A0 the primary key, and a coverage
rule expressed by the following RVE:

 := R///A1[sum(A2)>6] (A1,sum(A2))
In SQL: SELECT A1,SUM(A2) FROM R GROUP BY A1

HAVING SUM(A2)>6
 Figure 3 depicts the global approach for this example, which

is described below.
Reduction transformation and reduction rule. As the framing

hides the tuples and primary keys that are grouped in each
frame, the first step is to ungroup the frame by joining the rela-
tion Z obtained by evaluating the coverage rule with the original
relation R using the grouping attributes (A1) as the joining at-
tributes, and then ordering by the grouping attributes of Z. The
resulting relation (Z’) reveals the frames.

Definition 4 (Reduction transformation for frames with select after
frame). Let := R///G[q(G, F)] be a coverage rule which frames
the relation R according to the grouping attributes G and then
selects those that fulfill the predicate q(G,F), where F are aggre-
gate functions over attributes in R. The reduction transformation
generates an RVE that joins the coverage rule with R based on
the grouping attributes:

FS() := [.G1=R.G1 .G2=R.G2 …] R (2)
Then the reduction rule is =FS(). Relation is called group re-
lation and relation R is called source relation. The grouping attrib-
utes are called group keys. The primary keys of R (source keys)
determine tuples that form the group. The reduction rule is or-
dered by the group keys G in order to be able to perform the
reduction using a sequential exploration of tuples retrieved. If

relation R is the result of evaluating a query with joins and select
operators, it is first transformed as indicated in Section 4.1.

Reduction procedure. A naïve strategy would consist of apply-
ing the reduction procedure described in Section 4.1 considering
ri

k as a subrelation containing all tuples in each frame of Z, and
then selecting that with the lowest cost. However, each frame
may contain thousands or millions of tuples, and then the reduc-
tion may be considerably far from the optimum. Selecting an ar-
bitrary subset in each frame is not possible because the candi-
date tuples must fulfill the constraint stated by the frame predi-
cate (sum(A2)>6 in the example). Therefore, each frame must be
reduced before checking the cost of adding its source tuples to
the reduced database. Another practical constraint is that the re-
duction must be able to handle frames containing many rows
that may exceed the memory available, so that the reduction will
explore the tuples in frames on the fly (in the order that they are
obtained from the database).

The reduction of each frame will be made using a greedy al-
gorithm that sequentially explores each tuple in a frame and
adds it to the reduced frame if it improves a fitness function.
This function measures the distance of a candidate solution from
fulfilling the frame predicate.

The reduction procedure uses the algorithm described in Sec-
tion 4.1 with two differences: 1) zi

k is the set of tuples that com-
pose a frame, instead of a single tuple, and 2) the set zi

k is to be
reduced as much as possible while fulfilling the frame predicate
q(A, F). To do this we use a search algorithm before the evalua-
tion of the cost.

Reduction of frames. Search based algorithms have been previ-
ously used for a number of software engineering problems
[87][88] and in particular, software testing [89][90]. A fundamen-
tal issue is the definition of a fitness function that is minimized
in order to find the best solution among a number of candidate
solutions.

The fitness function incorporates a notion of distance or cost
that measures how far a candidate solution is (i.e. a set of inputs)
from satisfying some criterion (e.g. make true or false a given
condition or decision). The distance for relational expressions is
evaluated using cost functions, such as that defined by Tracey et
al. [91]. Fitness functions usually include the cost and an addi-
tional term called approach level [92].

When ranges of variables are very different, using a simple

 Let D’= (reduced database initially empty)
 For each coverage rule i of every query
 Let BestDB=; BestCost=∞ (initial cost)
 Let i = (i) (obtain the reduction rule)
 Let Z’ii (evaluation over the initial database)
 For each zi

k in Z’i
 Let CurrentDB=source(zi

k) (candidates to insert in D’)
 Let CurrentCost=cost(zi

k,D,D’) (cost of adding zi
k to D’)

 If CurrentCost=0 (no cost, no data to add)
 BestDB=; exit inner loop
 If CurrentCost<BestCost (cost improves, save best solution)
 Let BestDB=CurrentDB; BestCost=CurrentCost
 Let D’=D’BestDB (add the best solution found to D’)

Figure 2. Algorithm to select the reduced database with lowest cost

Figure 3. Example of database reduction for queries with frames and select
after frame

1
x2
x

A0 A1
R

x3

6
z7
y

5 y

3
3
2

x
9z
12

A1 sum
Z

x4

Coverage
Rule ()

Reduction
Transf. ()

Reduction
Rule ()

Reduction
Procedure

Coverage Rule
Transf. ()

Query
(Q)

0
4
A2

2
6

8
z9
z

3
3

1
x2
x

A0 A1
Z’

x3

z7 3
x4

0
4
A2

2
6

8
z9
z

3
3

x
12x
12

A1 sum

12x

9z
12x

z
9z
9

3 x
A0 A1
R’

x4
2
A2

6

 := R///A1[sum(A2)>6] (A1,sum(A2))
 := Z[Z.A1=R.A1]R

(Z.A1,sum(Z.A2),R.A0,R.A1,R.A2)

TUYA ET AL.: COVERAGE-AWARE TEST DATABASE REDUCTION 7

distance function may distort the results. Consider the decision
a>5 AND b<2020, where the ranges of a and b are 0..10 and
0..10000, respectively, and two pairs of inputs a=0, b=1910 and
a=4, b=1900. If the distance of a logical expression is defined as
the sum of the individual distances, the distance of the second
pair is larger by 6 units. However, in this context the second pair
is a better solution because the value of the first condition is very
close to the solution. Several approaches to normalize the dis-
tances are given in the literature such as that defined by Baresel
[93] which expressed the normalized distance as 1-1.001-dist.
However, this kind of normalization has some drawbacks [94].

The problem of searching for solutions in the context of the
reduction of frames, which is the subject of this section, has some
particularities that have to be handled:

1. A solution is a set of tuples (a subset of the frame that has
to be reduced). Expressions contain aggregate functions
over attributes of the solution that have to be evaluated
over sets of tuples.

2. The problem does not consist of generating new candi-
date tuples, but rather of selecting a set of tuples from the
original frame that will be included in the reduced frame.

3. The algorithm is constrained by the practical necessity of
a sequential evaluation of the original tuples, which may
contain a large number of tuples that cannot fit in the
memory. Therefore, each one of the visited tuples (candi-
date tuple) has to be considered on the fly either to be
added or discarded into the reduced frame.

4. The normalization of distances is very important, because
logical expressions may involve relational expressions in-
cluding variables with short ranges (e.g. when counting
the number of tuples in the frame) and variables with
large ranges (e.g. when adding currency values).

Taking into account the above considerations, the definitions of
distance, fitness and reduction procedure for frames are pro-
vided below:

Distances for base predicates: Let XZ’ be a single original
frame that is being reduced and X’ the reduced frame (initially
empty). Let pi be a base predicate, which may contain references
to attributes or aggregate functions over attributes but not logi-
cal expressions. The distance d(pi,X’) over the relation X’ is cal-
culated using the Tracey functions [91].

Consider, for example, a predicate p:=sum(a)8 evaluated
over a relation with three tuples {(1), (2), (3)}. The evaluation of
the distance calculates the term sum(a) which gives 6. Then the
distance is 8-6=2.

Definition 5 (Fitness function for the frame predicate). Let T be a
subrelation TX (candidate tuples to be added to X’). The fitness

f(pi,T,X’) of predicate pi when adding candidate tuples in T to X’
is calculated with respect to the previous distance (before add-
ing the tuples T) according to:

fitness(pi) := f(pi , T, X') = 1

 dcand
 dprev

 = 1

 d(pi , X'T)
 d(pi , X')

where dprev is the distance of the predicate pi with regard to the
relation X’ and dcand is the distance of the predicate pi with respect
to relation X’ after adding the candidate tuples T.

Note that this definition of fitness is relative to the distance of
a previous solution and therefore it prevents the aforemen-
tioned normalization problem. A positive value of fitness means
that adding the candidate tuple approaches the reduced frame
to the solution and conversely for negative values. A value of 0
means no change and a value of 1 means that a solution has been
found.

Let q be a predicate based on a logical expression over predi-
cates pi. The fitness function for logical expressions is calculated
as:

fitness(p1 p2) := average(fitness(p1), fitness(p2))
fitness(p1 p2) := maximum(fitness(p1), fitness(p2))

Note that these functions are different to the Tracey’s func-
tions: For AND operators fitness of p1 and p2 cannot be added
because the fitness is upper bounded by 1. For OR operators the
maximum is calculated instead of the minimum because in this
case larger values of fitness mean lower distance to the objective.

Definition 6 (Reduction procedure for frames). The reduction pro-
cedure for a frame X and a frame predicate q follows the algo-
rithm in Figure 4.

Let us return to the example shown in Figure 3 to illustrate
how the frame reduction works. The reduction rule produces
two frames (for values x and z of A1). When the above algorithm
processes the first frame it performs four iterations, one for each
tuple:

1. The first tuple is added to X’.
2. dprev=6-sum(A2)+=2+. The second tuple adds a value of

0 for A2. Then dcand=dprev, therefore, fitness=0. As fitness is
not positive the tuple is skipped.

3. dprev=2+. The third tuple adds a value of 2 for A2, so
sum(A2)=6 and dcand=6-6+=, therefore, fitness=1- (the
predicate sum(A2)>6 still is false). This tuple is added to
X’.

4. dprev=. The fourth tuple adds a value of 6 for A2, so
sum(A2)=12 and dcand=0, therefore, fitness=1 (The predi-
cate is fulfilled) and this tuple is added to X’.

Once X’ is obtained, it is explored again in order to check
whether some tuple may be removed while keeping the predi-
cate sum(A2)>6 true. Removing the first tuple fulfills this predi-
cate so that it is removed from X’. No other tuples fulfill this
predicate, so that solution is composed by the 3rd and 4th tuples
of the original frame.

The same algorithm is applied to the second frame, which
gives a solution consisting of all tuples (1st, 2nd and 3rd tuples).

From the above reduced frames the first one is selected as its
cost is 2 (it adds two tuples) while the cost of the second reduced
frame is 3 (it adds three tuples).

Note that the selection of the frame to be included in the re-
duced database depends on the initial state of the reduced data-
base. In this example an empty reduced database was assumed

 Let X’=
 For each subrelation TX composed by a single tuple
 (candidate tuple)
 If processing first iteration then
 Let X’=T
 Else
 Let f=fitness(q,T, X’) (fitness caused by adding T to X’)
 If f>0 then
 Let X’=X’T (add tuple contained in T to reduced frame)
 If f=1 then (condition is true, solution is found)
 Try to remove every single tuple in X’ whenever
 fitness is 1 after removal and return

Figure 4. Algorithm to reduce a frame

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

as starting point. However, if the reduced database before the
algorithm contained the last two tuples of X’, the selected frame
would be the latter, because, although it consists of three tuples,
only one of them would be added to the database.

The implementation of the reduction algorithm supports the
SQL aggregate functions count, max, min, avg, sum. When aggre-
gate functions are involved in a predicate their arguments are
included as additional attributes in the reduction rule. The re-
maining scalar subexpressions are also converted into addi-
tional attributes in order to facilitate the evaluation and to sup-
port SQL functions. When a frame is evaluated to determine the
fitness function the predicate is algorithmically evaluated (logi-
cal, relational and arithmetic operators as well as null value se-
mantics are supported). The aggregate functions are evaluated
over the tuples in the frame using the attribute representing its
argument (which will take different values at each tuple). Alt-
hough the RVE’s in the relational algebra are set oriented, SQL
is bag oriented. Therefore, by default duplicates are not re-
moved in SQL unless the distinct set quantifier is specified. The
evaluation of aggregate functions takes into account this seman-
tics and includes support for the distinct quantifier in aggregate
functions.

Coverage gain and loss: There are some occasions on which a
rule that is covered becomes uncovered after adding additional
rows. Two main kinds of coverage rules may produce these cov-
erage losses: 1) A rule with a frame and a select after the frame:
If the reduction algorithm is unable to obtain a solution for any
frame, this rule will lose the coverage (due to the greedy and
sequential design of the reduction procedure). 2) A rule with
frame predicates that involve aggregate functions: For instance,
during reduction a frame predicate sum(a)<10 may be fulfilled,
but after applying the reduction algorithms to other rules, new
rows with large positive values for a may be inserted in the same
reduced database.

In the second case, the problem is unsolvable for pairs of rules
without grouping attributes in the form sum(a)<10, sum(a)≥10
because they cannot be simultaneously true in the same data-
base. It can be potentially solvable if frames have grouping at-
tributes by ensuring each rule is satisfied in different frames.
With the current implementation, as the reduction procedures
process each rule sequentially, there is a possibility that the same
frame be selected leading to a coverage loss. This could be
avoided by reprocessing these uncovered rules to ensure that
they are satisfied over different frames.

4.3 Subqueries

Reduction transformations for subqueries are inspired in earlier
works from Kim [95] and Ganski and Wong [96]. These are mo-
tivated by the difficulty of DBMSs to evaluate efficiently the
subqueries. Basically, they consist of removing the subqueries
by joining the subquery expressions in the main query. In this
article the goal is different as the problem is to obtain the source
tuples that are processed in the evaluation of a reduction rule to
produce an output, but the key ideas of these transformations
are still applicable.

Consider an RVE in the form R[p] where R is a relation (which
may contain joins) and p is the select predicate. Select predicates
with subqueries include expressions on attributes A of R and
subqueries S. There are three different kinds:

 Scalar subquery: A rop (S), where rop is a relational opera-
tor.

 Logical predicates: A [not] in (S), [not] exists (S).
 Quantified comparison predicate: A rop [[not] any| some |

all] (S).
Additionally, depending on the form of S there are other vari-
ants:
 Correlated subquery: where a select expression in S refer-

ences some attribute on the outer query.
 Group subquery: where S includes grouping and aggre-

gate functions.
The reduction transformation creates a reduction rule that joins
relation R with S, over a predicate for joining only the tuples that
satisfy the subquery expression as shown below:

Definition 7 (Reduction transformation for scalar subqueries). Let
 := R[p] be a coverage rule, where p contains some scalar
subquery expression in the form A rop S[q] (B0). Let B0 be the
(unique) projected attribute of S. Let replace(x,y,z) be the replace-
ment of y by z in x. The reduction transformation is defined as:

SQ() := R[A rop B0]LS [replace(p,S,B0q)] (3)
In SQL: SELECT * FROM R LEFT JOIN S ON A rop B0

WHERE replace(p,S,B0 AND q)
Then the reduction rule is =SQ(). Relation R is called base re-
lation and relation S is called source relation. Source tuples are de-
termined by the primary keys of both R and S.

Example 3. Consider the following RVE (coverage rule):
R[A1=2 A2 = (S[B1=0](B0))

In SQL: SELECT * FROM R WHERE A1=2 OR A2=(SELECT
B0 FROM S WHERE B1=0)

Using the previous definition, the reduction rule is:
R[A2=B0]LS [A1=2 (A2=B0B1=0)]

In SQL: SELECT * FROM R LEFT JOIN S ON A2=B0
WHERE A1=2 OR (A2=B0 AND B1=0)

Note that join type is left and the join predicate has also been
added to the select predicate. This allows handling OR expres-
sions that may be true even if the subquery expression is false.

The other kinds of subqueries are handled as particular cases:
Case 1 (in, not in). A [not] in S is replaced by A=S and A≠S,

respectively before applying the reduction transformation.
Case 2 (exists, not exists). For exists subqueries A rop B0 is re-

placed by true in the reduction transformation. In the case of not
exists, the transformation is simplified to the original query R
[p(A)] as no tuples have to be selected from S.

Case 3 (any, some, all subquery). Predicates are replaced by their
equivalents using scalar subqueries.

Case 4 (group subquery). The RVE of the subquery includes
groups in the form S[q]///G[r] (aggr), where aggr is an aggregate
function over the attributes of S. To obtain the reduction trans-
formation, the subquery is first transformed according to Defi-
nition 4 and then Definition 7 is applied. To ensure that the re-
duction process finds only tuples that satisfy the subquery con-
dition a correlation frame predicate is created in the form A rop
aggr. If a subquery has groups, the frame predicate is the logical
conjunction of these and that obtained by the group transfor-
mation.

Case 5 (correlated subquery without groups). In a correlated
subquery S, the select predicates of relation S contain references
to attributes of the parent relation R. As the general transfor-
mation includes the select predicate of subquery S, no additional
considerations are needed.

TUYA ET AL.: COVERAGE-AWARE TEST DATABASE REDUCTION 9

Case 6 (correlated subquery with groups). When a correlated
subquery includes groups it is first transformed according to
Kim’s JA Nested query algorithm [95].

Reduction procedure. When a subquery does not contain
groups, only a tuple is needed to satisfy the coverage criterion.
Therefore, the reduction procedure is that of queries with select
and joins (Section 4.1). If a subquery contains groups, the reduc-
tion procedure is that of queries with frames (Section 4.2).

4.4 Reduction for Combinations of Operators

The previous section deals with coverage rules that include a
single nesting between two relations. In general, a coverage rule
may contain different combinations of operators. Figure 5 dis-
plays at the top an example of a coverage rule with a frame op-
erator and two subqueries, the second one also includes frames.
The generation of reduction rules and the reduction procedure
in these cases is described below and illustrated with an exam-
ple.

Reduction rules. Given a main RVE which contains nested
RVEs, the generation of its reduction rule proceeds recursively
(depth first) starting from the main RVE. Given a current RVE
that is visited:
 The appropriate transformation rule is applied to remove

the nesting or frame. If the RVE is a subquery containing
a frame, the transformation of the frame is performed be-
fore the transformation of the subquery.

 A set of attributes, called frameset is added as a projection
in the reduction rule. These attributes include the group-
ing attributes (if any), the base and source keys and other
attributes from source relations needed to evaluate ex-
pressions (e.g. arguments in aggregate functions).

The reduction rule is ordered by the group key and base key
attributes of the framesets in the same order that they have been
obtained. This will allow a sequential exploration of tuples re-
trieved to perform the reduction.

Example 4. Consider the example of an RVE depicted at the
top of Figure 5 that contains a main query Q1 (based on relation
S) with a frame operator. Q1 has two select predicates which in-
volve subqueries Q2 (based on T) and Q3 (based on U with a
frame operator). The corresponding reduction rule is depicted
at the bottom of Figure 5.

The main query Q1 forms groups: Transformation in Defini-
tion 4 is applied where Q1 is the group relation, g is the group
key, S is the source relation and k1 is the source key. The frame-
set is composed by g, k1.

The resulting query still has two subqueries. Q2 is a scalar
subquery: Definition 7 is applied where base relation is S, source
relation is T and base and source keys are k1, k2 respectively,
which form the second frameset.

Finally, the resulting query has a single subquery Q3 which
forms groups. According to Section 4.3 (Case 4), Definition 4 is
first applied where Q3 is the group relation, h is the group key,
U is the source relation and k3 the source key. Definition 7 is
applied where S is the base relation, U is the source relation and
k1, k3 are the base and source keys, respectively. A correlation
frame predicate b<sum(d) is created associated to this group. The
third frameset is composed by h, k1, k3, b, d. Note that b and d
have been added as they are needed to evaluate the frame pred-
icate.

Reduction procedure. After obtaining the result set that con-
tains tuples retrieved by the execution of the reduction rule, the
problem is to detect and explore every frame from the initial da-
tabase to select subsets of tuples based on the fitness functions
and the costs. We can view these tuples as a logical table that is
called reduction tableaux. Figure 6 displays a reduction tableaux
for the previous example: Columns represent the framesets and
their attributes (greyed columns include other attributes of the
relations, although they do not belong to the framesets). Rows
(tuples) and columns are partitioned into frames. From the fig-
ure we can see that each frame partitions the tuples that belong
to its left frame based on the repeated values for keys of the
frameset (repeating values of tuples inside a frame are not
shown at each row for clarity).

Reduction is performed by exploring the reduction tableaux,
taking into account:
 Tuples are processed sequentially: only a current tuple

needs to be fetched from the database at each time.
 Each frameset maintains two sets of frames to keep track

of the best and current solutions, respectively. This is the
only data structure that is kept in memory

 We say that a frame or a frameset is at the end/beginning
when the tuple below/above the current tuple belongs to
a different frame, respectively.

To find a solution (tuples to be inserted in the reduced data-
base) the evaluation proceeds over each frameset in the tableaux
from left to right:
 When a frame begins to be evaluated the evaluation of its

right frame is triggered before processing any of its tu-
ples.

 When a frame ends its evaluation the current solution is
added or replaces the current solution of this frame based
on the cost.

 After the end of the evaluation of a frame, if its left frame
is not at the end, the evaluation of the next frame begins
again. Otherwise, the end of evaluation of the left frame
is triggered.

A solution composed by the best solution of each frameset is
found after the processing of the first frameset ends. Then, if
there are more tuples the processing begins again to search for
better solutions based on the cost.

Example 4 (cont.). Let us illustrate the above process using the
reduction tableaux displayed in Figure 6. We consider in this ex-
ample that the reduced database contains one tuple of T with
k2=2 from the reduction of a previous rule. The following para-
graphs detail the reduction process.

Figure 5. Example of nested queries and their reduction rule

Q1 := S [a in Q2 b<Q3] /// g (g,count(*))

Q2 := T(c)

Q3 := U // h (sum(d))

Q1

Q2 Q3

SELECT g,count(*) FROM S WHERE
a in (SELECT c FROM T)
AND b < (SELECT sum(d) FROM U GROUP BY h)
GROUP BY g

Group
Relation

Base
Relation

Source
Relation

Q1 S

S T

Q2 S U

Q1

Q2

Q3

Q1 [Q1.g=S.g] S
[S.a=T.c] T
[S.b<Q3.sum(d)]

(Q3 [Q3.h=U.h] U)

SELECT g,k1,a,b,k2,c,h,k3,d FROM Q1 Q1Alias
LEFT JOIN S ON (Q1Alias.g = S.g)
LEFT JOIN T ON (S.a = T.c)
LEFT JOIN (Q3 Q3Alias LEFT JOIN U ON (Q3Alias.h = U.h))

ON (S.b < Q3Alias.SumAlias)
ORDER BY Q1Alias.g , S.k1 , T.k2 , Q3Alias.h , U.k3

Note: sum(d) in Q3
is aliased as SumAlias

Database
Schema
S (k1,a,b,g)

T(k2,c)

U(k3,d,h)

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

The reduction starts at tuple 1 and frameset 1 which triggers
the evaluation of framesets 2 and 3. Frameset 3 begins pro-
cessing its tuples. Tuple 1 is included in its current solution for
frameset 3, although the frame predicate is not covered yet. The
process continues by evaluating frameset 3 with tuple 2. The cor-
relation frame predicate b<sum(d) improves the fitness and then
tuple 2 is added to its current solution. The process continues by
adding tuple 3 and finally tuple 4. At this point the frame pred-
icate is true and there are no more tuples. A solution for frameset
3 has been found. Cost is evaluated as the sum of tuples to be
inserted from the base tables: one for frameset 1, one for frame-
set 2 and 4 for frameset 3: cost=1+1+4=6. At this point, frameset
2 is at the end and then its current solution is stored as the best
solution (same solution).

Frameset 1 is not at the end, therefore the evaluation of frame-
set 2 (2nd frame) is triggered, which triggers again the evalua-
tion of frameset 3. Tuples 5, 6, 7 and 8 are processed as before
until the solution is found. At this point frameset 2 is at the end,
but now the cost is 1+0+4=5 (as the tuple with k2=2 in T was
previously present in the reduced database). Then the best solu-
tion for frameset 2 is replaced by this one. Frameset 1 is at the
end, so, its solution is also recorded as the best solution.

Row 9 restarts the evaluation of all framesets as in previous
paragraphs, but in this case only two tuples are needed to make
true the correlation predicate b<sum(d) in frameset 3. The cost of
this solution is 1+1+2=4. As at this point frameset 2 is at the end,
this solution is also stored as its best solution. Likewise, frameset
1 is at the end, and the same solution replaces the previous best
solution.

The final solution is the best solution for framesets 1 to 3,
which include tuples 9 and 10. Looking at the primary keys in
the tableaux we determine the tuples which have to be inserted
in the reduced database: k1=2 (relation S), k2=3 (relation T) and
k3=1, k3=2 (relation U).

Handling Views. The above reduction transformations may
handle base relations (i.e. those which are implemented as ta-
bles) or derived relations (i.e. those which are composed by the
result of evaluating a query). However, in commercial DBMS
systems, named derived relations (called views) are frequently
used. The procedures described before are applicable in this
case, but a preprocessing stage is needed before transforming
the coverage rules into the reduction rules. Whenever a view is

1 QAShrink is available at: http://in2test.lsi.uniovi.es/sqltools/qashrink/

found in a coverage rule, 1) the RVE that describes it is extracted,
2) transformed as shown above, 3) an auxiliary view with the
transformed RVE is created with a different name (reduction
view) and 4) the coverage rule is modified by replacing the name
of the original view by the name of the reduction view.

5 OPTIMIZATION AND TOOL SUPPORT

The reduction transformations and procedures shown in previ-
ous sections have been implemented in the QAShrink1 tool,
which automates the whole reduction process, including the
generation of coverage rules, transformation into reduction
rules and execution of the reduction procedures. Once the re-
duction procedures for all rules have finished, QAShrink selects
the rows (tuples) from the initial database that have to be in-
serted in the reduced database and determines what other rows
have to be added in order to preserve the integrity constraints.
Finally, all these selected rows are copied from the initial data-
base to the reduced database. The script to do this can be saved
to allow the performance of further resets of the reduced data-
base.

The reduction rules are SQL queries that are executed over
the initial database to produce result sets that are processed by
the reduction procedures. There are a number of factors affect-
ing time performance of the reduction: 1) The query execution
time especially for complex queries and when many rows have
to be processed. 2) The row fetch time as most of the time spent
in the transport of data between the database management
server and the client machine is idle time waiting for the trans-
ference of a new data block. 3) The time spent in executing the
reduction procedures. The rest of this section deals with the op-
timizations that have been implemented in QAShrink to im-
prove its efficiency.

Three main kinds of optimizations may be made, which are
detailed in subsequent sections:

1. Manipulate the reduction rule in order to achieve a faster
execution in the database server. This will be accom-
plished by making some transformations on the reduc-
tion rule (Section 5.1).

2. Manipulate the reduction rule to limit the size of the re-
duction relation, i.e. the number of tuples returned by the
reduction rule (Section 5.2). The use of this optimization
can be optionally selected by the user.

3. Parallelize some operations in order to take advantage of
multicore architectures and the load distribution be-
tween client and database server machines, i.e. the exe-
cution of the reduction procedures and the reduction
rules, respectively (Section 5.3). The use of this optimiza-
tion can be optionally selected by the user.

5.1 General efficiency optimizations

Coverage rules for a query are designed to obtain a subset of
rows that satisfy a given test requirement for a query. This pro-
duces fewer rows than the original query and as such a faster
processing. However, the transformations that obtain the reduc-
tion rules introduce an overhead due to the additional joins used
to determine the base keys. A number of optimizations are made
after the reduction rules have been generated:

Figure 6. Example of a reduction tableaux for nested RVEs

g k1 a b k1 k2 c h k1 k3 b d

1 1 1 4 6 1 1 4 1 1 1 6 2

2 2 2

3 3 2

4 4 2

5 1 2 4 1 1 1 6 2

6 2 2

7 3 2

8 4 2

9 2 2 5 3 2 3 5 1 2 1 3 2

10 2 2

11 3 2

12 4 2

Tuple

Id

Frameset 3 (Q3)Frameset 2 (Q2)Frameset 1(Q1)

http://in2test.lsi.uniovi.es/sqltools/qashrink/

TUYA ET AL.: COVERAGE-AWARE TEST DATABASE REDUCTION 11

Frame removal: If a rule does not have any select after a frame,
the frames are removed as the reduction procedure only needs
a single tuple from the frame to cover the rule.

Using SQL windowing functions2 for frames: It is applicable only
if the DBMS supports such functions. When this optimization is
applied the clause PARTITION BY … OVER is used instead of
joining the source and group relations.

Move subqueries to join clauses: If an uncorrelated scalar
subquery appears at a conjunctive selection predicate, the con-
dition containing the subquery is used for joining the source and
base relations. This helps the DBMS to retrieve the data faster.

Convert non-scalar to scalar subqueries: In the above case, if the
aggregate function is avg, max or min and the relational operator
is < or ≤, an additional condition is added to the join predicate
to force the subquery to return to the maximum value (con-
versely if operator is > or ≥). This decreases the number of tuples
that are retrieved from the database and additionally avoids po-
tential coverage losses.

Simplification of subquery rules: Some coverage rules for uncor-
related subqueries include a main query and a where clause
with the subquery inside of an exists logical predicate. As at least
one row that satisfies the main query has been obtained when
processing the previous rules, the current rule is simplified by
removing the main query.

5.2 Limiting the size of the reduction relation

A smaller size of the reduction relation is achieved by modifying
the reduction rule to specify a limit in the number of tuples of
different frames. Four different cases can be specified for:

1. Queries without frames: To limit the tuples retrieved by the
reduction rule described in Section 4.1.

2. Queries with frames. To limit the tuples retrieved by the
group relation described in Section 4.2.

3. Frames. To limit the tuples retrieved by the source rela-
tion described in Section 4.2.

4. Subqueries: To limit the tuples retrieved by the source re-
lation described in Section 4.3.

This is accomplished by enclosing the SQL of the reduction rule
under the clause PARTITION BY … OVER. This allows control-
ling the size of each frame by specifying its maximum number
of tuples. Note that this optimization can only be used if it is
supported by the DBMS. The particular syntax depends on the
particular DBMS vendor specification. For instance, in SQL
server the TOP keyword is used after SELECT. In Oracle, the
ROWNUM special column is added in a condition of the
WHERE clause.

Limiting the result size is a trade-off between cost and qual-
ity. When limiting the result set size the efficiency improves as
less data is read from the dataset. However, this implies that less
data may be reused when performing the reductions and so, a
larger reduced database may be produced.

5.3 Parallelizing tasks

Consider a database reduction that has to process a number of
reduction rules i. The client computer applies the reduction
transformations to generate a rule 1 that is sent to the database
server for execution. It receives the result from the database

2 The windowing functions (eg. PARTITION BY) were introduced by the
ANSI/ISO SQL:2003 standard. They are supported by DBMSs such as Oracle,
SQLServer or PostgreSQL.

server and then executes the reduction procedure. After finish-
ing, the next rule 2 is sent to the database and so on. Although
some processes may be executed in parallel (database server
may parallelize some tasks and rows can be sent to the client
while it is still processing a query) the smallest time is con-
strained by the sum of the execution times of each rule i.

To allow a faster processing we should parallelize some other
tasks. For example, assume that we send four rules to be exe-
cuted at the database server in parallel. At this moment, the cli-
ent is idle waiting for some result set. At some time, two rules
begin returning result sets to the client. Then, two reduction pro-
cedures are now being executed in parallel. As soon as one of
these procedures finishes (e.g. 1), a new rule (5) is issued to the
database server and so on. Now the total time is not constrained
by the sum of execution times of all rules. This design is detailed
below. Figure 7 depicts the different tasks that may be executed
as different subprocesses (threads). These optimizations are not
dependent on the DBMS and therefore they can be applicable in
all cases.

Parallelizing Query Execution: Several queries (reduction rules)
are submitted in parallel for execution to the database server.
Having several processes in parallel allows decreasing the total
query execution time in the database server and an additional
decreasing of the time that the reduction procedure must wait
between issuing a query for execution and the fetching of the
first result set row.

Parallelizing Reduction & Cost Evaluation: Each thread executes
the reduction procedure for a rule, evaluates the cost and de-
cides whether a row will be kept to be inserted in the reduced
database. This decreases the total time of the reduction proce-
dures.

Row Fetch & Selection: This process coordinates the overall re-
duction process. It receives each open result set from the execu-
tion of reduction rules and sends rows to the Reduction & Cost
Evaluation threads. As soon as it receives the latest row from a
rule, it issues the next rule for reduction. This does not preserve
the order in which rules are reduced, but contributes to keep all
processors as busy as possible.

6 EVALUATION

To assess the feasibility of the approach to database reduction
we present the results of the reduction obtained with three dif-
ferent databases as case studies.

6.1 Research Questions

This evaluation addresses four primary exploratory questions
related to the effectiveness:
 RQ1: How does the reduction perform in terms of fault-

Figure 7. Parallelizing the reduction procedures

Client

Database Server

Query Execution Row Fetch &

Selection
Reduction &
Cost Evaluation

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

detection effectiveness at the query level?
 RQ2: How does the reduction perform in terms of cover-

age at the query level?
 RQ3: How does the reduction perform in terms of reduc-

tion effectiveness?
 RQ4: How does the reduction perform at the application

level?
Two additional secondary questions related to the efficiency
that may have influence on RQ1 to RQ4 are addressed:
 RQ5: Is the approach scalable with the size of the data-

base?
 RQ6: How do the optimizations affect the performance

of the reduction?

6.2 Objects of Study

This evaluation uses three different initial databases (Helpdesk,
Compiere and several instances of TPC-H from 10MB to 100GB)
and their associated queries. Table 1 displays for each database
the DBMS used, the number of tables, its size in terms of the total
number of rows for all tables as well as the size of the largest
table. The last columns show the number of queries that will be
used in this study and the number of views that are used.

Table 2 displays more detailed metrics for a number of repre-
sentative queries, including the total number of tables involved
in the query, the number of groupings (G), union statements (U),
views (V) and subqueries/derived tables (S). The complexity of
decisions is measured by counting the number of case state-
ments (C) and the number of conditions in where (W).

Helpdesk is an in-house web application to manage service re-
quests [7]. We used a production database as the initial database
with 22,387 tickets, 103,553 annotations on tickets and 279 users.
The SQLServer database contains 31 tables. The set of queries
has been taken from the database logs collected during security

3 The source distribution of Compiere can be found at http://source-
forge.net/projects/compiere. The set of views used in this study can be found in
the file compiere-all\db\database\Create\Views.sql of the Version 2.53b.

testing sessions, comprising 198 different queries.
Compiere3 is an open source ERP and Customer Relationship

Management (CRM) business solution for Small and Medium-
sized Enterprises. We used as initial database a randomly gen-
erated Oracle database containing 129 tables. The tables have an
average of 23 columns, the largest having 84 columns. The set of
queries is composed of the full set of views of the application
(107 queries).

TPC-H [97] is a benchmark to evaluate the performance of the
execution of queries against databases. It contains 8 tables and
22 queries4 which cover most SQL constructs. Queries are de-
signed to stress the DBMS and include different combinations of
joins, groupings, different kinds of subqueries and derived ta-
bles. We divided the queries into two objects of study (11 queries
each): TPCHg which mainly contains groups without
subqueries and TPCHs which contains subqueries, groups and
a view.

This study has been performed using two 4 core Intel Xeon
X5660 2.8GHz virtual machines. The QAShrink application uses
a 3GB virtual machine. The database server uses SQL Server
2008 R2 and Oracle Database 11g Enterprise V11.2.0.1.0 with
6GB reserved for the database. In order to avoid the bias caused
by database cache between experiments, every run has been pre-
ceded by a complete shutdown of the database server.

6.3 Effectiveness at the query level (RQ1 to RQ3)

Table 3 displays the main results related to RQ1 and RQ2. To
assess the fault-detection effectiveness we performed a mutation
analysis. Previous studies showed that mutation analysis is an
appropriate method for evaluating the fault detection capabili-
ties of a test suite [98][99]. As we deal with SQL queries we gen-
erated a set of mutants for each query using the SQLMutation
tool [22]. It applies two main kinds of query mutation operators
(described in detail in [17]):
 Conventional mutations on relational, logical and arith-

metic operators in conditions and expressions, and re-
placement of identifiers.

 SQL specific mutations on main SQL clauses (joins,
subqueries, aggregates, etc.) and null values.

Both mutation score and SQLFpc coverage were measured
against the initial and the reduced databases.

RQ1 (fault detection effectiveness). From Table 3 we can appre-
ciate that the reduction produces a decrease in mutation score,
small in some databases and larger in others (maximum value is
6.6%). These results show fairly similar effectiveness losses to
other results for non-database applications described in Section
2.1 which show up to 7.3% effectiveness losses. That means that
the reduced database contains a diverse set of rows that may be
considered good enough to be used for testing purposes in the
sense that they have similar fault detection ability measured in
terms of mutants.

RQ2 (coverage). At first glance, when considering the SQLFpc
coverage the expected result would be to achieve a lower or
equal coverage than using the initial database, but the actual re-
sult shows that coverage increases in all reduced databases
(maximum value 4.9%). This increasing of coverage depends on

4 The specification of the the database schema and all queries for the latest
versión of TPC-H can be found at http://www.tpc.org/information/cur-
rent_specifications.asp under sections 1.2 and 2.4, respectively.

TABLE 1. DETAILS OF THE DATABASES USED IN THE STUDY

Database

name

DBMS Tables Rows (all

tables)

Rows

(largest

table)

Que-

ries

Views

Helpdesk SQL Server 31 137,490 103,553 198 7

Compiere Oracle 129 127,200 1,000 107 5

TPC-H (5

instances)

Oracle 8 86,805 to

866E+6

6,175 to

600E+6

22 1

TABLE 2. DETAILS OF SOME QUERIES USED IN THE STUDY

Database

name

Query name/id Tables G U V S C W

Helpdesk 17 10 2

 18 11 1 2 11

 29 8 1 2 4

 50 2 1 4

Compiere RV_BPartnerOpen 7 2 2 14 4

 C_Invoice_Candidate_v 5 1 1 24

 C_Invoice_LineTax_vt 24 5 13 5

 RV_UnPosted 16 15 15

TPCH 7 6 1 1 11

 8 8 1 1 1 10

 20 5 3 10

 21 6 1 2 13

http://sourceforge.net/projects/compiere
http://sourceforge.net/projects/compiere
http://www.tpc.org/information/current_specifications.asp
http://www.tpc.org/information/current_specifications.asp

TUYA ET AL.: COVERAGE-AWARE TEST DATABASE REDUCTION 13

the coverage gains (a coverage rule is not covered when exe-
cuted against the initial database, but covered when executed
against the reduced database) and coverage losses (a coverage
rule is covered when executed against the initial database, but
uncovered when executed against the reduced database). The
last rows in Table 3 display each of these values (number of rules
that become covered or uncovered, respectively, after the reduc-
tion).

Coverage gains are due to data not selected from the initial
database in detail tables as explained in Section 4.1 and coverage
losses are caused by aggregate functions as explained in Section
4.2. From the data in Table 3 we can conclude that for the data-
bases used in this study the reduced database is a reasonably
good solution in terms of coverage, although with a few cover-
age loss for some rules.

RQ3 (reduced database size). Table 4 displays the size of all da-
tabases (both initial and reduced). The size of the databases is
measured as the sum of the number of rows for all tables. We
can appreciate a significant reduction factor that leads to very
slight reduced databases.

As the reduction is driven by the coverage rules, which in
turn depend on the number of queries and their size and com-
plexity, the absolute size of the reduced database is not the best
indicator for the effectiveness of the reduction. The last row in
Table 4 displays the average number of rows taken from the in-
itial database that have to be inserted in the reduced database
divided by the total number of covered rules. We can observe
that these figures are small, ranging from 0.29 for the simplest
queries (Helpdesk) to 2.39 for the more complex queries
(TPCHg).

6.4 Effectiveness at the application level (RQ4)

The previous section showed the effectiveness related to cover-
age and mutation score for the queries involved in the reduction.
If part of the application logic is embedded in queries, the out-
put of a single run of a test case will depend on the values re-
turned by the queries and on the decisions taken in the proce-
dural code.

RQ4 (Effectiveness at the application level). To check this ques-
tion we prepared a set of test cases for the security check func-
tionality of the Helpdesk application. Security is the most critical
functionality as the ability to access tickets and annotations de-
pends on many factors:

 The logical database that the user has permission to ac-
cess, its organizational unit, the allowed ticket types
and the previous annotations made on tickets.

 Other user level parameters: restricting access to only
own tickets or only tickets that belong to its organiza-
tional unit.

 The transaction type (read, update, insert).
The security checking has a single method as entry point plus

3 auxiliar methods coded in Java containing 15 decisions. Dur-
ing the execution, the queries are dynamically constructed at 9
places in the code in order to take the appropriate decisions
based on the outputs produced by these queries.

We designed and automated (with Junit) a set of test cases.
The design of the test cases was made using a black-box ap-
proach taking into account the Helpdesk security requiere-
ments. From these security requirements we derived the test re-
quirements and then the test cases until all test requirements
were met. As a result, we obtained a total of 31 test cases. Instead
of creating a new test database for developing the test cases, we
used the existing reduced Helpdesk database (Table 4). This task
is fairly straightforward as the reduced database is small enough
to manually find the records that represent each test require-
ment by browsing the existing ones.

Next, the set of queries that were issued to the database when
executing these test cases were used to perform a second reduc-
tion process of the initial database using these queries, leading
to a second reduced database with 65 rows. The first two rows
in Table 5 display the sizes of the databases as well as the num-
ber of ticket records contained in each database.

The execution of the test cases against each of the test data-
bases leads to the same decision coverage. To evaluate the ap-
plication level effectiveness we performed a mutation analysis
on the four Java methods under test using two different tools:
MAJOR V1.1.6 [100][101] and muJava V4 [102]. Using each da-
tabase as the test database, the test cases were executed against
each mutated version. The results are displayed in the last rows
in Table 5.

MAJOR generated less mutants that led to lower scores than
muJava, as it is designed to maximize the efficiency of mutation
analysis [103][104][105]. The tests executed using the initial da-
tabase achieve very similar or equal mutation score than the
tests executed against reduced databases, regardless of the tool
used to generate the mutants (58.6% using MAJOR and around
85% using muJava). Moreover, with muJava the mutation score
is slightly lower than 85% when using different databases than

TABLE 3. COVERAGE AND MUTATION SCORE BEFORE AND AFTER

 Compiere Helpdesk

TPCHg

(10MB)

TPCHs

(10MB)

Number of mutants 192,851 65,666 4,835 3,069

Mutation Score (initial) 86.3% 61.8% 81.2% 76.6%

Mutation Score (reduced) 79.7% 61.5% 78.9% 70.0%

Mutation Score difference -6.6% -0.3% -2.3 -6.6%

Number of rules 1,762 1,341 145 119

Coverage (initial) 58.3% 49.0% 63.4% 68.9%

Coverage (reduced) 58.6% 50.5% 68.3% 71.4%

Coverage difference +0.3% +1.5% +4.9% +2.5%

Coverage Gain 6 20 7 4

Coverage Loss 2 0 0 1

TABLE 4. SIZE OF INITIAL AND REDUCED DATABASES

 Compiere Helpdesk

TPCHg

(10MB)

TPCHs

(10MB)

Size (initial) 127,200 137,490 86,805 86,805

Size (reduced) 1,356 194 220 119

Reduction Factor 1.07% 0.14% 0.25% 0.14%

Rows per Covered Rule 1.32 0.29 2.39 1.45

TABLE 5. MUTATION COVERAGE (APPLICATION LEVEL)

Initial

database

Reduced

database

Reduced

database (2nd)

Size (number of rows) 137,490 194 65

Num. of ticket records 22,387 31 10

Decision coverage 100% 100% 100%

Num. of mutants (MAJOR) 70 70 70

Mutation score (MAJOR) 58.6% 58.6% 58.6%

Num. of mutants (muJava) 320 320 320

Mutation score (muJava) 84.4% 85.6% 84.2%

14 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

the one used to build the test cases (the reduced database). The
reason is that some mutants result in modifications on part of
the SQL generated by the program (e.g. by removing a clause).
On a few occasions these mutants remain live when executed
against different databases. Nevertheless, the score for mutants
that modify other parts of the application logic is the same across
all test databases.

6.5 Efficiency (RQ5 and RQ6)

RQ5 (Scalability). To check the scalability of the reduction
with respect to the size of the database we generated a set of
TPCH databases using several scale factors, leading to 5 Oracle
databases ranging from 10 MB to 100GB (each database multi-
plies the size of the previous by 10). This leads to databases rang-
ing from 86,805 to 865,860,820 rows. We also repeated several
runs using all the optimizations that limit the size of the reduc-
tion relation (Section 5.2) by limiting the number of tuples to 10,
100 and 1,000, as well as not using any limit (NoLim).

Figure 8 displays the coverage of the initial and reduced da-
tabases. In general, the coverage is slightly larger for the reduced
databases than for the initial database. The increase is smaller as
the limit of the size of the reduction relation is also smaller, due
to the fact that fewer rows that have been covered by previous
rules are reused.

Table 6 displays the details of coverage gains and losses. For
Compiere and Helpdesk the gains and losses do not change sig-
nificantly with different optimization parameters. For TPCHg
and TPCHs there are differences for different scaling and opti-
mization parameters: Coverage gains are in a range from 3 to 9
without a defined pattern. The coverage losses range from 0 to
5 with a strong dependency on the optimization parameters.
Consider the worst case (database with 100GB and limiting the
frame to 10 rows). Using the initial database some frames are
composed by many thousands of rows. Selecting only ten of
them increases the probability of not fulfilling the select predi-
cates after the frames, causing the coverage losses. There is a
compromise on the loss of effectiveness caused by these kinds
of optimization and the efficiency improvement that will be
shown later. However, in most cases losses are small and in this
worst case losses compensate the gains.

Figure 9 depicts the size of each database after the reduction
(measured as the total of rows in all tables). The size slightly in-
creases with the optimizations and it is fairly independent from
the size of the database for the largest ones (TPCH with 1GB to
100GB). This leads to a high efficiency of the reduction with little
dependency on the size of the initial databases and the optimi-
zations, showing very large reductions measured in the percent-
age of rows that are kept in the reduced database (up to
0.000035% for TPCHg and 0.000017% TPCHs).

RQ6 (Performance). To check the performance with respect to
the size of the database and the optimizations, we repeated sev-
eral runs using the optimizations presented in Section 5.3 (Seq
means sequential and Par means parallel) as well as the row lim-
its used in the previous section.

Figure 10 depicts the total time spent in the reduction in log
scale. The figure shows how the time performance scales with
the database size for TPCH. The relation of time spent when re-
ducing each database with respect to the previous one (consid-
ering data for Seq) is 4.8, 10.8, 10.9, 13.4 for TPCHg and 5.0, 11.8,
11.5, 12.3 for TPCHs. As each database multiplies the size of the
previous one by a factor of ten we can see a near-linear growth
of the time with respect to the size.

A reduction rule is generated by transforming a coverage rule
which in turn is generated by transforming the original query.
In order to compare times across different databases and differ-
ent sets of queries we normalize the execution times with respect
to the original query. Figure 11 depicts the average time spent
per reduction rule divided by the average time spent per origi-
nal query.

Normalized times are between 1 and 3.5 across all databases
(Seq). Considering the results for TPCH, the normalized execu-
tion times are very similar, but this value suddenly rises for the
largest database (100GB) and this effect occurs early in TPCHs
(10GB) which contain subqueries. This is caused by the addi-
tional joins needed to reveal the base keys as well as the amount
of RAM memory available to the database server. Up to TPCH
1GB data needed for processing the query has enough room to
be kept in RAM and then the reduced queries run faster. For
larger database sizes the memory may not be sufficient and sec-
ondary storage (temporary space) has to be used, penalizing the

TABLE 6. SQLFPC COVERAGE GAINS - LOSSES

C
o

m
p

ie
re

H
e
lp

d
e

s
k

T
P

C
H

g
 1

0
M

B

T
P

C
H

g
 1

0
0

M
B

T
P

C
H

g
 1

G
B

T
P

C
H

g
 1

0
G

B

T
P

C
H

g
 1

0
0
G

b

T
P

C
H

s
 1

0
M

B

T
P

C
H

s
 1

0
0
M

B

T
P

C
H

s
 1

G
B

T
P

C
H

s
 1

0
G

B

T
P

C
H

s
 1

0
0
G

B

NoLim 6-2 20-0 7-0 9-0 7-0 4-0 6-0 4-1 4-2 4-3 6-1 4-1

Lim/1000 6-2 19-0 5-0 9-0 7-0 4-0 6-0 4-1 4-2 4-3 6-1 5-1

Lim/100 6-3 20-0 5-0 9-0 5-0 4-0 4-3 4-1 4-2 4-3 6-2 5-2

Lim/10 6-4 20-0 4-0 9-0 7-1 3-3 4-5 4-2 3-2 3-3 8-5 5-5

Figure 8. SQLFpc Coverage of each database after reduction

Figure 9. Size of each database after reduction (number of rows inserted
in the reduced database). *The number of rows for Compiere has been
divided by ten.

0

50

100

150

200

250

300

350

400

To
ta

l n
u

m
b

er
 o

f
ro

w
s NoLim Lim/1000

Lim/100 Lim/10

40,0%
45,0%
50,0%
55,0%
60,0%
65,0%
70,0%
75,0%
80,0%
85,0%
90,0%

%
 F

P
C

 C
o

ve
ra

ge

Initial NoLim Lim/1000 Lim/100 Lim/10

TUYA ET AL.: COVERAGE-AWARE TEST DATABASE REDUCTION 15

performance. The effect of optimizations that limit the number
of rows strongly decreases these times, the decrease being
higher for the largest databases, keeping the normalized execu-
tion time near or below 1. This effect is similar for Compiere and
Helpdesk databases, but not so pronounced.

Parallelizing also has a strong influence on the performance
by reducing roughly by half (on most occasions) the execution
times. The benefits of optimizations are larger for the biggest da-
tabases. The greatest improvement is for TPCHs 100GB which
has a normalized execution time of 3.43 (sequential without row
limits) that decreases to 0.40 (parallel with row limit 10) which
means that overall reduction time decreases by 11.7%.

7 THREATS TO VALIDITY

Results from the above study show a high degree of reduc-
tion of the databases while preserving most of the coverage with
a suitable performance and scalability. Transformation rules
cover many of the typical SQL constructs and their combina-
tions, and are fully automated. The criterion is white-box based,
therefore, the typical usage scenario of the approach is mainly
driven towards maintenance or reengineering as it requires a set
of queries and enough data to be loaded in the database to be
reduced. However, there are several issues that may threaten the
validity of these results, which are discussed below.

First, the reduction is driven by the SQLFpc coverage. There
is no guarantee that the test requirements embodied in the crite-
rion are the best suited for testing SQL queries, but as it is based
on the principles of MCDC it is more likely that they are reason-
ably adequate for determining a number of interesting situa-
tions to test.

Second, the coverage of the reduced database is not always
the same as the initial database, although the variations shown
before are small. On some occasions the coverage increases (cov-
erage gain). On others there is a possibility that rules covered
against the initial database, become uncovered over the reduced
database (coverage loss). The frame reduction procedures use an
approach to reduce frames which is not intended to find an op-
timum, but a small enough frame, and under some circum-
stances it may fail to find a solution. In this case, the bigger the
database is (containing more frames), the more likely it is to find
at least a small enough reduced frame. As shown before, the ef-
fect of coverage losses is present, however, it has been observed
for a small percentage of coverage rules as most of them are ad-
ditive, i.e., adding rows to cover a rule does not prevent other
rules from being covered.

Third, the approach of the reduction is based on the coverage
at the query level. This is well suited for reporting when most of
the application logic resides in the queries, but in general does
not guarantee the coverage of the procedural code of an appli-
cation. The more application logic is embedded in the queries
and the simpler decisions based on the queries are, the more
likely it is that coverage of the procedural code be kept because
the reduced database has considered the coverage of the logic
embedded in the query. This has been considered in the evalua-
tion of the effectiveness at the application level, although the
manual design of the test cases as well as the kind of application
used, is another threat to validity. Another potential problem is
that coverage of the queries may be modified by previous
changes to the data made by the program. It is important to note

that the reduced database is intended to be a starting point for
testing, but the tester may need to insert additional data for test-
ing particular situations.

Fourth, although many combinations of SQL clauses have
been considered, the total number of combinations is potentially
infinite meaning that a reduction transformation may fail for
some rules, leading to uncovered rules. To mitigate this effect
the automation has been thoroughly tested.

Finally, the study is limited to three applications, so the re-
sults may not generalize to other applications. However, these
are real-life applications that use SQL to process some logically
complex queries (in Helpdesk, related to the access security and
in Compiere ERP, the set of views on the basis of which all other
queries of the application are constructed). Additionally the
TPCH is an industry benchmark for testing the performance of
complex queries.

8 CONCLUSION

We have presented an approach for the reduction of test da-
tabases that takes a set of SQL queries and an initial database,
and produces a reduced test database that preserves the SQLFpc
coverage. The approach is able to handle complex queries cov-
ering a large set of SQL constructs and their combinations.

The results showed that a high degree of reduction can be at-
tained with few coverage losses and some coverage gains. Ad-

Figure 10. Total time (seconds) spent in the database reduction (depicted
in Log scale)

Figure 11. Normalized execution time spent in the database reduction
(average reduction time per rule divided by the average execution time
per query)

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

Ti
m

e
in

 s
e

co
n

d
s

(l
o

g1
0

 s
ca

le
) Seq Seq/1000

Seq/100 Seq/10
Par Par/1000
Par/100 Par/10

0

0.5

1

1.5

2

2.5

3

3.5

4

N
o

rm
al

iz
ed

 t
im

e

Seq Seq/1000
Seq/100 Seq/10
Par Par/1000
Par/100 Par/10

16 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

ditionally, it is scalable in relation to the size of the initial data-
base and the reduction time. Moreover, the whole approach to
the reduction of a database is fully automated and some optimi-
zations are included.

The typical target scenario is composed by applications that
rely on SQL queries for processing complex business rules. A
reduced test database may be created for testing or developing
specific queries, leading to a starting point of the test database
to complete the tests. When considering the whole application,
a large set of queries may be extracted from the database logs in
order to create a reduced database covering these queries, which
in turn may be used as a starting point for completing tests or
performing other maintenance operations. This is the first po-
tential benefit of the approach that contributes to a reduction of
the time spent on the task of creating test databases. A second
potential benefit is to allow a decrease of the times of loading
test databases, while keeping a representative set of data to ex-
ercise the queries of the applications, leading to faster test exe-
cution. Additionally, having small test databases contributes to
make the task of checking the actual results easier when devel-
oping and testing queries, contributing to a faster and more re-
liable test results comparison.

Our future work will concentrate on two areas. First, to com-
plete the evaluation and practical use at the application level to
include the ability to reduce test databases into the developer
and tester workflows. This will imply testing how the reduction
performs using other DBMS. Second, to use the reduction prin-
ciples to address NoSQL databases in order to provide support
for testing in the context of the development of applications that
manipulate data using these technologies.

ACKNOWLEDGMENT

This work was supported in part by projects TIN2010-20057-
C03-01 and TIN2013-46928-C3-1-R, funded by the Spanish Min-
istry of Economy and Competitiveness, and GRUPIN14-007,
funded by the Principality of Asturias (Spain) and ERDF funds.

REFERENCES

[1] A.B.M. Moniruzzaman and S.A. Hossain, “NoSQL Database: New Era of Da-
tabases for Big data Analytics - Classification, Characteristics and Compari-

son”, International Journal of Database Theory and Application, vol. 6, no. 4,

Aug. 2013.

[2] ISO/IEC 9075, Information technology - Database languages - SQL. Interna-

tional Standards Organisation, 1999.

[3] ISO/IEC/IEEE 29119-1:2013 Software and systems engineering - Software
testing - Part 1: Concepts and definitions. International Standards Organisa-

tion, 2013.

[4] J. Tuya, M. J. Suárez-Cabal and C. de la Riva, “Full predicate coverage for
testing SQL database queries”, Software Testing, Verification and Reliability.

vol. 20, no. 3, pp. 237-288, Sep. 2010.

[5] RTCA Inc, DO-178-B: Software Considerations in Airborne Systems and
Equipment Certification, Radio Technical Commission for Aeronautics

(RTCA), 1992.

[6] J. J. Chilenski, An investigation of three forms of the modified condition deci-
sion coverage (MCDC) criterion, Technical Report DOT/FAA/AR-01/18,

U.S. Department of Transportation, Federal Aviation Administration, April

2001.
[7] J. Tuya, M. J. Suarez-Cabal and C. de la Riva, “Query-Aware Shrinking Test

Databases”, Proc. Second Int’l Workshop on Testing Database Systems

(DBTest’09), June 2009.
[8] S. Yo and M. Harman, “Regression testing minimization, selection and prior-

itization: a survey”, Software Testing, Verification and Reliability, vol. 22, no.

2, pp. 67-120, Mar. 2012.

[9] G. Rothermel, M. J. Harrold, J. Ronne and C. Hong, “Empirical studies of test

suite reduction”, Software Testing, Verification, and Reliability, vol. 4, no. 2,

pp. 219–249, Dec. 2002.
[10] E. E. Emelie, M. Skoglund M and P. Runeson. “Empirical evaluations of re-

gression test selection techniques: A systematic review”, Proc. Second ACM-

IEEE Int’l Symposium on Empirical Software Engineering and Measurement
(ESEM’08), 2008.

[11] W. E. Wong, J. R. Horgan, S. London and A. P. Mathur, “Effect of test set

minimization on fault detection effectiveness”, Software Practice and Experi-
ence, vol. 28, no. 4, pp. 347-369, Apr. 1998.

[12] W. E. Wong, J. R. Horgan, A. P. Mathur and A. Pasquini, “Test set size min-

imization and fault detection effectiveness: A case study in a space applica-
tion”, The Journal of Systems and Software, vol. 48, no. 2, pp. 79-89, Oct.

1999.

[13] G. Rothermel, M. J. Harrold, J. Ostrin and C. Hong, “An empirical study of
the effects of minimization on the fault detection capabilities of test suites”,

Proc. Int’l Conf. on Software Maintenance (ICSM’98), 1998.

[14] G. Rothermel, M. J. Harrold, J. Ronne and C. Hong, “Empirical studies of test
suite reduction”, Software Testing, Verification, and Reliability, vol. 4, no. 2,

pp. 219-249, Dec. 2002.

[15] E. F. Codd, “A relational model of data for large shared data banks”, Commu-
nications of the ACM, vol. 13, no. 6, pp. 377-387, Jun. 1970.

[16] E. F. Codd, The Relational Model for Database Management - Version 2, Ad-

dison-Wesley, 1990.
[17] J. Tuya, M. J. Suárez-Cabal and C. de la Riva C, “Mutating database queries”,

Information and Software Technology, vol. 49, no. 4, pp. 398-417. Apr. 2007.
[18] G. Kaminski, U. Praphamontripong, P. Ammann and J. Offutt, “A logic muta-

tion approach to selective mutation for programs and queries”, Information

and Software Technology, vol. 53, no. 10, pp. 1137-1152, Oct. 2011.
[19] W. K. Chan, S. C. Cheung and T. H. Tse, “Fault-based testing of database

application programs with conceptual data model”, Proc. 5th Int’l Conf. on

Quality Software (QSIC’05), pp. 187-196, 2005.
[20] C. J. Wright, G. M. Kapfhammer and P. McMinn, “Efficient Mutation Analy-

sis Of Relational Database Structure Using Mutant Schemata And Parallelisa-

tion”, Proc. 8th Int’l Workshop on Mutation Analysis, 2013.
[21] C. J. Wright, G. M. Kapfhammer and P. McMinn, “The Impact of Equivalent,

Redundant and Quasi Mutants on Database Schema Mutation Analysis”, Proc.

4th Int’l Conf. on Quality Software (QSIC’14), Oct. 2014.
[22] J. Tuya, M. J. Suárez-Cabal and C. de la Riva, “SQLMutation: a tool to gener-

ate mutants of SQL database queries”. Proc. Second Workshop on Mutation

Analysis, 2006.
[23] C. Zhou and P. G. Frankl, “Mutation testing for java database applications”.

Proc. Second Int’l Conf. on Software Testing Verification and Validation

(ICST’09), pp. 396-405, 2009.
[24] C. Zhou and P. G. Frankl, “JDAMA: Java database application mutation ana-

lyser”, Software Testing, Verification and Reliability, vol. 21, no. 3, pp. 241-

263, Sep. 2011.
[25] C. Zhou and P. G. Frankl, “Inferential Checking for Mutants Modifying Data-

base States”, Proc. 4th Int’l Conf. on Software Testing Verification and Vali-

dation (ICST’11), pp. 259-268, 2011.
[26] S. R. Clark, J. Cobb, G. M. Kapfhammer, J. A. Jones and M. J. Harrold, “Lo-

calizing SQL Faults in Database Applications”, Proc. 6th IEEE/ACM Int’l

Conf. on Automated Software Engineering (ASE’11), pp. 213-222, Nov. 2011.

[27] C. Zhou and P. G. Frankl, “Empirical Studies on Test Effectiveness for Data-

base Applications”, Proc. 5th Int’l Conf. on Software Testing Verification and

Validation (ICST’12), pp. 61-70, 2012.
[28] H. Shahriar and M. Zulkernine, “MUSIC: Mutation-based SQL injection vul-

nerability checking”, Proc. 8th Int’l Conf. on Quality Software (QSIC’08), pp.

77–86, 2008.
[29] P. Bisht, P. Madhusudan and V. N. Venkatakrishnan, “CANDID: Dynamic

candidate evaluations for automatic prevention of SQL injection attacks”.

ACM Transactions on Information and System Security, vol. 13, no. 2, article
14, Feb. 2010.

[30] D. Appelt, C. D. Nguyen, L. C. Briand, and N. Alshahwan, “Automated testing

for SQL injection vulnerabilities: an input mutation approach”, Proc. Int’l
Symposium on Software Testing and Analysis (ISSTA’14), pp. 259-269, 2014.

[31] W. G. J. Halfond and A. Orso, “AMNESIA: analysis and monitoring for Neu-

tralizing SQL-injection attacks”, Proc. 20th IEEE/ACM Int’l Conf. on Auto-
mated software engineering (ASE '05). 174-183, 2005.

[32] G. M. Kapfhammer, M. L. Soffa, “A family of test adequacy criteria for data-

base-driven applications”, Proc. 9th European Software Engineering Conf.
held jointly with 11th ACM SIGSOFT Int’l Symposium on the Foundations of

Software Engineering, pp. 98–107, 2003.

[33] D. Willmor and S. M. Embury, “Exploring test adequacy for database sys-
tems”, Proc. 3rd UK Software Testing Research Workshop, pp. 123-133, 2003.

TUYA ET AL.: COVERAGE-AWARE TEST DATABASE REDUCTION 17

[34] G. M. Kapfhammer and M. L. Soffa, “Database-aware test coverage monitor-

ing”, Proc. 1st India Software Engineering Conf. (ISEC’08), pp. 77-86, 2008.

[35] O. S. Leitao Jr., P. R. S. Vilela and M. Jino, “Data flow testing of SQL-based
active database applications”, Proc. 3rd Int’l Conf. on Software Engineering

Advances (ICSEA’08), pp. 230-236, 2008.

[36] M. J. Suárez-Cabal and J. Tuya, “Using an SQL coverage measurement for
testing database applications”. Proc. 12th ACM SIGSOFT Symposium on the

Foundations of Software Engineering (FSE’12), pp. 253-262, 2004.

[37] M. J. Suárez-Cabal and J. Tuya, “Structural coverage criteria for testing SQL
queries”, Journal of Universal Computer Science, vol. 15, no. 3, pp. 584-619,

2009.

[38] P. McMinn, C. J. Wright and G. M. Kapfhammer, “An Analysis of the Effec-
tiveness of Different Coverage Criteria for Testing Relational Database

Schema Integrity Constraints”, University of Sheffield, Dept. Computer Sci-

ence, http://www.dcs.shef.ac.uk/intranet/research/public/resmes/CS1501.pdf
[3 Mar. 2015].

[39] W. G. J. Halfond and A. Orso, “Command-form coverage for testing database

applications” Proc. 21st IEEE/ACM Int’l Conf. on Automated Software Engi-
neering (ASE’06), pp. 69-80, 2006.

[40] G. Kaminski, G. Williams and P. Ammann, “Reconciling perspectives of soft-

ware logic testing”, Software Testing, Verification and Reliability, vol. 18, no.
3, pp. 149-188, Jan. 2008.

[41] P. Ammann and J. Offutt, Introduction to Software Testing. Cambridge Uni-

versity Press, 2008.
[42] D. Chays, S. Dan, P. G. Frankl, F. U. Vokolos and E. J, Weyuker, “A frame-

work for testing database applications”. Proc. ACM SIGSOFT Int’l Symposium
on Software Testing and Analysis (ISSTA’00), pp. 147-157, 2000.

[43] D. Chays, Y. Deng, P. G. Frankl, S. Dan, F. I. Vokolos and E. J Weyuker, “An

AGENDA for testing relational database applications”, Software Testing, Ver-
ification and Reliability, vol. 14, no. 1, pp. 17-44, Jan. 2004.

[44] Y. Deng, P. G. Frankl and D. Chays, “Testing database transactions with

AGENDA”. Proc. 27th Int’l Conf. on Software Engineering (ICSE’05), pp.
78-87, 2005.

[45] D. Chays, J. Shahid and P. G. Frankl, “Query-based test generation for data-

base applications”, Proc. First Int’l Workshop on Testing Database Systems
(DBTest’08), 2008.

[46] D. Willmor and S. M. Embury, “An intensional approach to the specification

of test cases for database applications”, Proc. 28th Int’l Conf. on Software En-
gineering (ICSE’06), pp. 102-111, 2006.

[47] D. Willmor and S. M. Embury, “Testing the implementation of business rules

using intensional database tests” Proc. Testing: Academic & Industrial Conf.
on Practice and Research Techniques (TAIC PART’06), pp. 115-126, 2006.

[48] C. Binnig, D. Kossmann and E. Lo, “Reverse query processing”, Proc. 23rd

Int’l Conf. on Data Engineering (ICDE’07), pp. 506-515, 2007.
[49] C. Binnig, D. Kossmann and E. Lo, “MultiRQP - Generating test databases for

the functional testing of OLTP applications” Proc. 1st Int’l Workshop on Test-

ing Database Systems (DBTest’08), 2008.
[50] W. T. Tsai, D. Volovik D and T. F. Keefe TF, “Automated test case generation

for programs specified by relational algebra queries”, IEEE Transactions on

Software Engineering, vol. 16, no. 3, pp. 316-324. Mar. 1990.
[51] J. Zhang, C. Xu and S. C. Cheung, “Automatic generation of database in-

stances for white-box testing”, Proc. 25th Int’l Computer Software and Appli-

cations Conf. (COMPSAC’01), pp. 161-165, 2001.

[52] S. A. Khalek, B. Elkarablieh, Y. O. Laleye and A. Khurshid, “Query-aware

test Generation using a relational constraint solver”, Proc. 23rd IEEE/ACM

Int’l Conf. on Automated Software Engineering (ASE’08), pp. 238-247, 2008.
[53] S. Shah, S. Sudarshan, S. Kajbaje, S. Patidar, B. P. Gupta and D. Vira, “Gen-

erating test data for killing SQL mutants: A constraint-based approach”, Proc-

27th IEEE Int’l Conf. on Data Engineering (ICDE’11), pp. 1175–1186, 2011.
[54] P. Vemasani, A. Brodsky and P. Ammann, “Generating Test Data to Distin-

guish Conjunctive Queries with Equalities”, Proc. of IEEE Software Testing,

Verification and Validation Workshops, pp. 216-221, 2014.
[55] C. de la Riva, M. J. Suárez-Cabal and J. Tuya, “Constraint-based Test Data-

base Generation for SQL Queries”. Proc. 5th Int’l Workshop on Automation

of Software Test (AST’10), 2010.
[56] M. Emmi, R. Majumdar and K. Sen, “Dynamic Test input generation of data-

base applications”, Proc. Int’l Symposium on Software Testing and Analysis

(ISSTA’07), pp. 151-162, 2007.
[57] K. Pan, X. Wu and T. Xie, “Program-input generation for testing database ap-

plications using existing database states”. Automated Software Engineering,

pp. 1-35, Jul. 2014.
[58] K. Pan, X. Wu and T. Xie, “Generating program inputs for database applica-

tion testing”, Proc. of IEEE/ACM Int’l Conf. on Automated Software Engi-

neering (ASE’11), pp. 73–82, 2011.

[59] K. Pan, X. Wu and T. Xie, “Guided test generation for data-base applications

via synthesized database interactions”, ACM Transactions on Software Engi-

neering and Methodology, vol. 23, no. 2, article 12, Mar. 2014.
[60] C. Li, and C. Csallner, “Dynamic symbolic database application testing”, Proc.

of Int’l Workshop on Testing Database Systems (DBTest’10), pp. 1-10, 2010.

[61] G. M. Kapfhammer, P. McMinn and C. J. Wright, “Search-Based Testing of
Relational Schema Integrity Constraints Across Multiple Database Manage-

ment Systems”, Proc. IEEE 6th Int’l Conf. on Software Testing, Verification

and Validation (ICST’13), pp. 31-40, Mar. 2013.
[62] N. Bruno and R. V. Neheme, “Finding Min-Repros in Database Software”,

Proc. Second Int’l Workshop on Testing Database Systems (DBTest’09), June

2009.
[63] K. Morton and N. Bruno, “FlexMin: A Flexible Tool for Automatic Bug Iso-

lation in DBMS Software”, Proc. Fourth Int’l Workshop on Testing Database

Systems (DBTest’11), June 2011.
[64] G. M. Kapfhammer, “Towards a Method for Reducing the Test Suites of Da-

tabase Applications”. Proc. IEEE 5th Int’l Conf. on Software Testing, Verifi-

cation and Validation (ICST’12), pp. 964-965, Apr. 2013.
[65] F. Haftmann, D. Kossmann and A. Kreutz. “Efficient regression tests for da-

tabase applications”, Proc. 2nd Conf. on Innovative Data Systems Research,

pp. 95-106, 2005.
[66] F. Haftmann, D. Kossmann and E. Lo, “A framework for efficient regression

tests on database applications”, The VLDB Journal, vol. 16, no. 1, pp. 145-

164, Jan. 2007.
[67] V. Sharma and A. P. Agrawal, “Regression Test Case Selection for Testing

Database Applications. International Journal of Innovative Technology and
Exploring Engineering, vol 3, no. 1, pp. 212-216, Jun. 2013.

[68] R. A. Haraty, N. Mansour, B. Daou, “Regression test selection for database

applications”, Advanced Topics in Database Research, vol. 3, K. Siau ed, pp.
141-165, Idea Group Publishing, 2004.

[69] D. Willmor and S. M. Embury, “A safe regression test selection technique for

database-driven applications”, Proc. 21st IEEE Int’l Conf. on Software
Maintenance (ICSM’05), pp. 421-430, 2005.

[70] B. Daou, R. A. Haraty, N. Mansour. “Regression Testing of Database Appli-

cations”, Proc. ACM symposium on Applied computing (SAC’01), pp. 285-
289, 2011.

[71] E. Rogstad, L. Briand, R. Dalberg, M. Rynning and E. Arisholm, “Industrial

Experiences with Automated Regression Testing of a Legacy Database Appli-
cation”, Proc. 27th IEEE International Conf. on Software Maintenance

(ICSM’11), pp. 362-371, 2011.

[72] E. Rogstad, L. Briand and R. Torkar, “Test case selection for black-box re-
gression testing of database applications”, Information and Software Technol-

ogy, Vol. 55, no. 10, pp. 1781-1795, Oct. 2013.

[73] A. C. B. Loureiro, C. G. Camilo-Junio, L. T. Queirozz, C. L. Rodrigues, P.
Leitao-Junior and A. M. R. Vincenzik”, “Shrinking a Database to Perform

SQL Mutation Tests Using an Evolutionary Algorithm”, Proc. IEEE Congress

on Evolutionary Computation (CEC’13), pp. 20-23, 2013.
[74] B. Glavic and K. Dittrich, “Data Provenance: A Categorization of Existing

Approaches”, Proc. Datenbanksysteme in Business, Technologie und Web

(BTW’07), pp. 227-241, 2007.
[75] Y.L. Simmhan, B. Plale and D. Gannon, “A Survey of Data Provenance in e-

Science”. ACM SIGMOD Record, vol. 34, no. 3, pp. 31-36, Sept. 2005.

[76] R. Ikeda and J. Widom, “Data Lineage: A Survey”, Technical report, Stanford

University, 2009.

[77] T. Heinis and G. Alonso, “Efficient Lineage Tracking for Scientific Work-

flows”. Proc. 2008 ACM SIGMOD Intl. Conf. on Management of Data (SIG-
MOD’08), pp. 1007-1018, 2008.

[78] Y. Cui and J. Widom, “Lineage tracing for general data warehouse transfor-

mations”, The VLDB Journal, vol. 12 no. 1, pp. 41-58, May 2003.
[79] B. Glavic, “Big Data Provenance: Challenges and Implications for Bench-

marking”, Proc. 2nd Intl. Workshop on Big Data Benchmarking (WBDB’12),

2012.
[80] P. Buneman, S. Khanna, and W.C. Tan, “Why and Where: A Characterization

of Data provenance”, Proc. 8th Intl. Conf. on Database Theory (ICDT’01), pp.

316-330, 2001.
[81] B. Glavic, “Perm: Efficient Provenance Support for Relational Databases”,

PhD dissertation, University of Zurich, 2010.

[82] Y. Cui and J. Widom, “Practical Lineage Tracing in Data Warehouses”, Proc.
16th Intl. Conf. on Data Engineering (ICDE’00), pp. 367-378, 2000.

[83] Y. Cui, “Lineage Tracing in Data Warehouses”. PhD dissertation, Stanford

University, 2002.
[84] B. Glavic and G. Alonso, “Perm: Processing Provenance and Data on the same

Data Model through Query Rewriting”, Proc. 25th Intl. Conf. on Data Engi-

neering (ICDE’09), pp. 174-185, 2009.

18 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

[85] B. Glavic and G. Alonso, “Provenance for Nested Subqueries”, Proc. 12th Intl.

Conf. on Extending Database Technology (EDBT ’09), pp. 982-993, 2009.

[86] B. Glavic, R.J. Miller and G. Alonso, “Using SQL for Efficient Generation and
Querying of Provenance Information”, In Search of Elegance in the Theory

and Practice of Computation, V. Tannen, L. Wong, L. Libkin, W. Fan, W.C.

Tan and M. Fourman, eds. pp 291-320, Lecture Notes in Computer Science,
vol. 8000, Springer Verlag, 2013.

[87] M. Harman and B. F. Jones, “Search-based software engineering”, Infor-

mation and Software Technology, vol. 43, no. 14, pp. 833–839, Dec. 2001.
[88] M. Harman, S. A. Mansouri and Y. Zhang, “Search-based software engineer-

ing: Trends, techniques and applications”. ACM Computing Surveys, vol. 45,

no. 1, Nov. 2012.

[89] P. McMinn, “Search‐based software test data generation: a survey”, Software
Testing, Verification and Reliability, vol. 14, no. 2, pp. 105–156, Jun. 2004.

[90] P. McMinn, “Search-Based Software Testing: Past, Present and Future”, Proc.

IEEE Fourth Int’l Conference on Software Testing, Verification and Valida-
tion Workshops (ICSTW), pp. 153-163, 2011.

[91] N. Tracey, J. Clark, K. Mander and J. McDermid, “An automated framework

for structural test-data generation”, Proc. Int’l Conf. on Automated Software

Engineering (ASE’98), pp. 285-288, 1998.

[92] P. McMinn and M. Holcombe, “Evolutionary testing using an extended chain-

ing approach”, Evolutionary Computation, vol. 14, no. 1, pp. 41-64, 2006.
[93] A. Baresel, “Automating structural tests using evolutionary algorithms”, Mas-

ter’s Thesis, Humboldt University of Berlin, Germany, 2000.

[94] A. Arcuri, “It really does matter how you normalize the branch distance in
search-based software testing”. Software Testing, Verification and Reliability,

vol. 23, no. 2, pp. 119-147, Mar. 2013.

[95] W. Kim, “On Optimizing an SQL-Like Nested Query”. ACM Transactions on
Database Systems, vol. 7, no. 3, pp. 443-469, Sep. 1982.

[96] R. A Ganski and H. K. T. Wong, “Optimization of Nested SQL-Queries Re-

visted”. Proc. ACM SIGMOD Int’l Conf. on Management of data, pp. 23-33,
1987.

[97] Transaction Performance Council, The TPC Benchmark™H (TPC-H),

http://www.tpc.org/tpch/ [30 Jan. 2015].
[98] J.H. Andrews, L.C. Briand and Y. Labiche, “Is mutation an appropriate tool

for test-ing experiments?”, Proc. 27th Intl Conf. on Software Engineering

(ICSE’05), pp. 402-411, May 2005.
[99] R. Just, D. Jalali, L. Inozemtseva, M.D. Ernst, R. Holmes and Gordon Fraser,

“Are Mutants a Valid Substitute for Real Faults in Software Testing?”, Proc.

22nd ACM SIGSOFT Intl. Symp. on Foundations of Software Engineering
(FSE’14), pp. 654-665, Nov. 2014.

[100] R. Just, F. Schweiggert and G. M. Kapfhammer, "MAJOR: An efficient and

extensible tool for mutation analysis in a Java compiler", Proc. Intl. Conf. on
Automated Software Engineering (ASE’11), pp. 612-615, Nov. 2011.

[101] R. Just, "The Major mutation framework: Efficient and Scalable Mutation

Analysis for Java", Proc. Intl. Symp. on Software Testing and Analysis (IS-
STA’14), pp. 433-436, Jul. 2014.

[102] Y.S. Ma, J. Offutt and Y.R. Kwon, “MuJava: An Automated Class Mutation

System”, Software Testing, Verification and Reliability, vol. 15, no. 2, pp. 97-
133, Jun. 2005.

[103] R. Just, G. M. Kapfhammer and F. Schweiggert, "Using conditional mutation
to increase the efficiency of mutation analysis", Proc. Intl. Workshop on Au-

tomation of Software Test (AST’11), pp. 50-56, May 2011.

[104] R. Just, G. M. Kapfhammer and F. Schweiggert, "Using non-redundant muta-
tion operators and test suite prioritization to achieve efficient and scalable mu-

tation analysis", Proc. Intl. Symp. on Software Reliability Engineering

(ISSRE’12), pp. 11-20, Nov. 2012.
[105] R. Just, M. D. Ernst and G. Fraser, "Efficient mutation analysis by propagating

and partitioning infected execution states", Proc. Intl. Symp. on Software Test-

ing and Analysis (ISSTA), pp. 315-326, Jul. 2014.

Javier Tuya is a Professor at the University of
Oviedo, Spain, where he is the research leader of the
Software Engineering Research Group. He received
his PhD in Engineering from the University of Oviedo
in 1995. He is Director of the Indra-Uniovi Chair,
member of the ISO/IEC JTC1/SC7/WG26 working
group for the recent ISO/IEC/IEEE 29119 Software
Testing standard and convener of the corresponding
AENOR National Body working group. His research
interests in software engineering include verification

& validation and software testing for database applications and services. He
is a member of the IEEE, IEEE Computer Society, ACM and the Association
for Software Testing (AST).

Claudio de la Riva is an assistant professor at the
University of Oviedo, He is a member of the Software
Engineering Research Group (GIIS, giis.uniovi.es).
He obtained his PhD in Computing from the University
of Oviedo. His research interests include software
verification and validation and software testing mainly
focused on testing database applications and ser-
vices. He is a member of ACM

María José Suárez-Cabal is an assistant professor
at the University of Oviedo, Spain, and is a member
of the Software Engineering Research Group (GIIS,
giis.uniovi.es). She obtained her PhD in Computing
from the University of Oviedo in 2006. Her research
focusses on software testing, and more specifically
on testing database applications.

Raquel Blanco is an assistant professor at the Uni-
versity of Oviedo, Spain, and is a member of the Soft-
ware Engineering Research Group (GIIS, giis.un-
iovi.es). She obtained her PhD in Computing from the
University of Oviedo in 2008. Her research focusses
on software testing, mainly on testing database ap-
plications and the user-database interaction.

