
A Partial Test Oracle for XML Query Testing

Dae S. Kim-Park, Claudio de la Riva, Javier Tuya

Department of Computing, University of Oviedo, Campus of Viesques, s/n, 33204 (SPAIN)

kim_park@lsi.uniovi.es, claudio@uniovi.es, tuya@uniovi.es

Abstract

A partial test oracle is proposed to verify the actual

outputs in access testing on XML data. The considered

software under test is a query program which receives

as input an XML document obtained from an XML

repository of any kind, and produces XML data as

output. To deal with the actual outputs from this testing

process, the partial oracle evaluates the correctness of

the test executions according to: (1) a loose

specification provided by the tester, and (2) a set of

predefined constraints that describe invariant

properties of the expected outputs. By means of the

loose specification, the oracle can particularize the

constraints to the concrete behaviour of the query

program to test. This approach enables the oracle to

give automatically a response about the correctness of

the program under test with a certain precision at

feasible cost. To illustrate the usefulness of the

approach a case study is presented.

1. Introduction

One of the main challenges in software testing is the

test oracle problem [1]. An oracle is known as a

mechanism able to determine whether or not a software

under test has behaved as expected during execution. In

most cases the oracle is manual, which means that a

human directly provides the expected output for each

test case. But the derived costs of this approach make

test oracle automation an important matter to be

considered in software testing research.

Oracle automation is a relevant issue, especially

when testing software that interacts with huge volumes

of data located on external systems, as occurs, for

example, in applications that need to retrieve data from

database management systems. For this type of

software manual oracles may be unfeasible when the

amount of data to handle during testing is considerably

large or complex.

Recently, with the advent of the Web and its

underlying technologies based on the eXtensible

Markup Language (XML) [9], data access operations

against XML data sources (XML documents located on

repositories) have become commonplace. The

widespread use of XML-based formats for data

representation and interchange between heterogeneous

systems has drastically increased the dependency on

XML data access operations in a variety of systems,

especially in those concerned with Web services (for

example, e-commerce applications or XML data

services). These operations are carried out by means of

XML queries that may be error-prone, and thus, they

need to be tested, but the amount and the complexity of

the data that may be involved in the tests require a

feasible oracle.

In this work, we tackle the oracle problem in the

particular case of access testing on XML data. The

target programs to test are query processes treated as

black-box programs that receive as input an XML

document, and output an XML document fragment,

which is a set of XML nodes (as defined in [12]) that

does not need to be a well-formed XML document. The

input XML document represents the external data

required to be processed by the query, while the output

XML document fragment, or output fragment for

simplicity, is the actual output of the test and the result

of the querying process. The target program can be

represented by a diversity of XML query languages,

such as XPath [10] and XQuery [11], as well as

programmatically using XML manipulation libraries

(for example a Java program using the SAX/DOM

API). This diversity is possible since the black-box

approach abstracts the details of the querying process to

test. Bearing this testing scheme in mind, we

concentrate solely on the oracle problem, leaving aside

the techniques concerning test case generation [5].

The proposed oracle for XML query testing is a so-

called partial oracle [7], which is known as an oracle

able to determine whether an actual output of a test is

incorrect without knowing the correct output. As such,

a partial oracle in query testing does not need to infer

the expected output to detect faults in the target

tuya
Cuadro de texto
Copyright © 2009 IEEE. Reprinted from: 2009 Testing: Academic and Industrial Conference - Practice and Research Techniques.This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the University of Oviedo's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org.By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

program. Hence, the internal processing of the partial

oracle is easier to deal with, and the volume of data

implicated in the tests has less impact on the oracle

efficiency.

In general terms, oracle effectiveness depends on a

specification derived from requirements which

describes the expected behaviour of the target program.

The more detailed the specification, the more precise

the oracle is, but a precise oracle is inherently complex

and costly to obtain. To balance the relationship

between the level of detail supplied by the specification

and the precision needed by the oracle to check the

correctness of the target program, our partial oracle

specification is composed by the following two

elements: (1) Behavioural requirements, which are

provided by the tester and comprise a set of loose

requirements about a concrete query program; and (2)

Oracle constraints, which describe invariant properties

of the expected outputs. Oracle constraints are inherent

to the oracle and independent from the program under

test. They can supply a diagnostic for the test relying on

given behavioural requirements. Because the oracle

constraints are invariant, they can be embedded in the

oracle; thus, from the point of view of the tester, only

the behavioural requirements need to be provided to

make the partial oracle operate.

The most remarkable contributions of this approach

are:

─ The use of a partial oracle to alleviate the oracle

problem when testing query programs. This type of

oracle is aimed to detect faults in test case

executions even when the correct output is

unknown. This facilitates the evaluation of the

executions when there are large data structures in

the test input and/or output, such as XML data.

─ The definition of the oracle based on loose

requirements, and constraints intended to check

properties of the program outcomes. With this

approach the tester does not need to provide

accurate data to the oracle in order to specify the

expected behaviour of the query, but the oracle can

detect some types of faults despite the lack of

precision.

─ An initial step towards the oracle automation. The

proposed oracle checks the test executions based on

a set of constraints whose evaluation may be

automated.

The rest of the paper explains in-depth the details of

the approach. Section 2 presents an overview of the

partial oracle integration in the testing environment.

Section 3 details the behavioural requirements that need

to be provided by the tester. Section 4 proposes a set of

oracle constraints for query programs. Section 5

includes a sample case study for a better understanding

of the partial oracle operation and its usefulness.

Section 6 outlines some related work. Finally, Section 7

includes some conclusions and ideas for future work.

2. Overview of the partial test oracle

Figure 1 shows a diagram of the partial oracle

integrated in the testing environment. The diagram

represents a test case execution being evaluated against

the partial oracle.

The partial oracle has two sources of information to

use in the evaluation: the oracle specification, and the

test data. The oracle specification is composed by the

behavioural requirements provided by the tester, and

the oracle constraints defined during the oracle design.

On the other hand, the test data includes the test input

and the resulting actual output.

To evaluate the execution, the oracle makes use of

the behavioural requirements to parameterize the oracle

constraints in order to check the presence of different

types of errors.

Figure 1. Partial oracle in the testing environment

During the constraint evaluation, if any constraint is

violated, the partial oracle indicates the presence of a

fault in the target program with a “Fail” response. A fail

message may be provided by the oracle according to the

violated constraint. Otherwise, if no faults have been

found, the oracle gives a “Pass” response.

In the following sections, the partial oracle

specification is detailed to give a view of its inner

working.

3. Behavioural requirements

In this section the behavioural requirements are

detailed. The requirements are represented by functions

and sets comprising a loose specification about the

expected behaviour of the target program.

Before presenting the behavioural requirements, the

following definitions are needed.

Definition 1: A query is a function defined

as , where is the infinite set of all XML

documents, and is the infinite set of all document

fragments, satisfying . As a convention, the input

data of test cases is named . Thus, is the

resulting output fragment (the actual output of the test).

Definition 2: A specification-compliant query, , is

a query function that complies with specific

requirements imposed by the domain of application. In

other words, the function could act as an oracle for a

query under test expected to follow the same

requirements (being the correct expected output

of the test cases associated with the query), but

obviously, there is no easy way to obtain . As such,

 is only used for notation purposes to support other

definitions further on.

Given these definitions, the elements that describe

the behavioural requirements are presented below.

Definition 3: The relaxed specification-compliant

query, , is a query function that returns a superset of

the correct expected output (). In other

words, , being the XML hierarchy-

independent inclusion. The query is likely to violate

some requirements of the domain of application.

Nevertheless, a query complying with this definition is

not hard to obtain and can act as an approximation

of .

As an ad hoc example, consider the specification-

compliant query () given by the XPath expression

doc("doc.xml")/a/b[d < 1.2]/c[e = 5][f = "12"].

The query retrieves data from the XML document

doc.xml consisting of element nodes c which contains

child elements e with value 5 and child elements f with

value "12". The elements c should be children of

elements b containing elements d with a value less than

1.2. In turn, the selected elements b must be under the

root node (the document node) a. Note that this query is

not the query under test; it is the query that should be in

place of the query under test in order to obtain a correct

output. This query is unavailable to the tester, but is

shown here to clarify the example. A relaxed

specification-compliant query, could be constructed

from the specification of by ignoring some predicate

expressions and steps, obtaining, for example, the query

doc("doc.xml")//c[e = 5].

This query specifies that the output must contain every

element node c in the XML document doc.xml whose

child element e equals 5. Intuitively, it can be seen that

the relaxed queries () are easier to obtain than

specification-compliant queries () and hence, they are

less error-prone. The example becomes meaningful

when the query under test is far more complex.

Definition 4: The inserted nodes, , is a finite set

of XML nodes that are known to be always added to the

output fragment returned by the query function ; thus,

it establishes an inclusion property. is a disjoint set

of (). is said to be complete if it

contains all the nodes specified in the requirements, or

incomplete if contains only a representative part of

them.

Definition 5: The excluded nodes, , is a set which

contains the XML nodes that are not expected to appear

in the actual output ; thus, it establishes an

exclusion property.

Definition 6: The ordering specification, , is

defined as where is an ordering

pair. Each ordering pair is defined as , in

which is a reference to a node in the output fragment

and is one of the operations in , where is the

ascending order and is the descending order.

At this point, the behavioural requirements are

defined as follows.

Definition 7: The behavioural requirements for a

query is defined as the tuple ,

where is a relaxed specification-compliant query,

is a set of inserted nodes, is a set of excluded nodes,

and is an ordering specification. The subscript

indicates that the elements are specification-based. The

level of detail given to the tuple elements is directly

related to the precision of the partial oracle. It is not

obligatory to fill every element exhaustively; for

example, does not need to be complete in order to

obtain a useful result from the oracle, but as a

consequence, the oracle may not be able to detect

certain errors. The tester should bear in mind that,

although each element of the requirement tuple contains

data related with a specific feature or the query, they

can be used by the oracle constraints to check the

presence of varied types of errors. For example, the

element of the requirement tuple can be used to

determine insertion errors as well as selection errors,

though the set only contains insertion related

information.

In the following sections it will be noticeable that

the contents of the tuple depend on the data required

by the proposed oracle constraints in Section 4. Hence,

if new oracle constraints are specified, the tuple may

be redefined with more elements.

4. Oracle constraints

The oracle constraints establish necessary

conditions for the correct behaviour of the target query

programs. These constraints are expected to be satisfied

in every correct test case execution, so that they are

embedded in the oracle.

The criterion we have used to guide the definition of

the oracle constraints is oriented to cover the main

operations involved in the XML querying processes.

For this purpose, we have modelled (black-boxed) the

XML query behaviour as a combination of the three

basic operations below, exemplified with the XPath and

XQuery capabilities. Alternative methods to query

XML data (e.g., Java with SAX/DOM) could also be

represented by these operations, but for the sake of

simplicity they have been omitted.

 Input data selection. This can be considered the

most important operation on XML data retrieving.

It takes a selected subset of nodes from the input

XML document and passes it to the output

fragment. This operation is present in every query

that accesses data, and absent in queries that only

perform data-independent computations such as

arithmetic calculations. The operation includes the

navigational functionality provided by XPath.

 Data insertion. This consists in adding new nodes

in the output fragment that are not present in the

input document. In terms of XPath and XQuery, it

is equivalent to a direct or procedural insertion of

nodes, by means of node constructors or the

fn:insert-before() function [13], respectively.

 Data ordering. The nodes in the output fragment

can be ordered by zero or more fields (XML

element or attribute values). While the XPath

language lacks functionalities to cover this

operation, the XQuery language provides data

ordering capabilities by means of the ORDER BY

construction within FLWOR expressions. FLWOR

stands for a very common construction in XQuery

(composed by FOR, LET, WHERE, ORDER BY

and RETURN expressions) similar to the SELECT

statement from SQL. The usage of FLWOR

expressions will be demonstrated further on in the

case study (Section 5).

In the following subsections, a number of

constraints are proposed for each operation, but note

that further constraints could be specified in order to

check the test case executions with more precision.

4.1. Constraints for input data selection

Constraints for input data selection are intended to

check whether the data from the test case input is

selected appropriately by the program. Some of them

overlap with the same purpose as constraints for data

insertion (see Section 4.2) checking both data selection

and insertion operations. Constraints for input data

selection use the insertion () and exclusion () sets

of the behavioural requirements to perform the

evaluation on selection operations, as well as the

specification-compliant query .

In order to characterize the constraints for input data

selection, the following definitions are needed.

Definition 8: the root nodes of an XML document

fragment, , with , is the set of nodes in

 without parent in the XML hierarchy.

Definition 9: is a predicate

which is true when the node is a descendant of the

node in the document fragment . Otherwise it

is false.

The constraints for input data selection are

presented below.

─ Constraint 1 (Inclusion in relaxed output):

 must be satisfied. Also, if the query

does not carry out data insertion operations, the

constraint can be refined as . The

constraint can detect general selection errors derived

from mistaken predicates or bad node references.

Also, it can detect unexpected insertion of nodes

when and with complete.

─ Constraint 2 (Inclusion of root nodes in relaxed

output): must be

satisfied. This constraint states that the actual output

contains a part of the expected root nodes. If it is not

satisfied, we can infer that the query does not

retrieve all the required data.

─ Constraint 3 (Hierarchy consistency): For each

pair where , if the condition

 is true, then the predicate

 must be satisfied. The

constraint checks the hierarchy consistency among

the XML nodes. If it is not satisfied, we determine

that the query has applied an incorrect

transformation to the input data.

─ Constraint 4 (Absence of unexpected nodes):

 must be satisfied. In other words, the

excluded nodes, , must not be in the actual output.

4.2. Constraints for data insertion

The constraints of this section are oriented to check

the correctness of data insertion operations only. They

depend on the inclusion () set of the behavioural

requirements.

─ Constraint 5 (Presence of expected nodes): If the

query carries out insertion of data, then

. This constraint checks whether every node

specified in the set of inserted nodes, , is included

at least once in the output fragment.

─ Constraint 6 (Inserted nodes contained in the

complete set): If the query carries out insertion of

data and is complete, then .

When it is not satisfied, it means that an unexpected

insertion has been detected.

4.3. Constraints for data ordering

Only one constraint is proposed to check the data

ordering. It depends on the ordering specification set,

, included in the behavioural requirements (defined in

Section 3). Before showing the constraint for data

ordering, the definitions below are required.

Definition 10: The order predicate, ,

determines whether the document fragment

complies with the ordering defined by the ordering pair

 (as in definition 6 in Section 3).

Definition 11: The ordered groups of a document

fragment , , is a function that returns a

sequence containing sets of nodes from E grouped by

the ordering pair .

─ Constraint 7 (Correct ordering): Given an ordering

specification , the predicate is

satisfied. This predicate is defined recursively as

where E is a document fragment, and the

function returns the first ordering pair of . The

predicate is always true. The

constraint checks that the ordering in the output file

is as expected. If it is not satisfied, the ordering

operations may be missing or wrong in the target

program.

5. Application

In this section a case study is presented to show the

usefulness of the partial oracle. First, a program

specification and a test input are presented. Then, the

specification is translated into a tuple of behavioural

requirements which are finally used by the oracle

constraints to detect faults.

5.1. Specification and test input

The specification for the target program in this

example states that it is required to retrieve the books

from the file library.xml whose price does not exceed

the limit amount of 70$. The output must be enclosed

between cheapBooks element tags, shown in ascending

order by year of publication and in descending order by

price. In addition, each book element must contain its

title, publisher and price, and the publication year as

the element publicationYear.

The considered input for the test case of this sample

is shown in Figure 2. It is supposed to be contained in a

file named library.xml, and includes information

about books in a library.

<library>
 <book year="1994">
 <title>TCP/IP Illustrated</title>
 <author>
 <last>Stevens</last><first>W.</first>
 </author>
 <publisher>Addison-Wesley</publisher>
 <price>45.95</price>
 </book>
 <book year="1994">

 <title>Advanced Programming in the Unix
 environment</title>
 <author>
 <last>Stevens</last><first>W.</first>
 </author>
 <publisher>Addison-Wesley</publisher>
 <price>65.95</price>
 </book>
 <book year="2000">
 <title>Data on the Web</title>
 <author>
 <last>Abiteboul</last>
 <first>Serge</first>
 </author>
 <author>
 <last>Buneman</last><first>Peter</first>
 </author>
 <author>
 <last>Suciu</last><first>Dan</first>
 </author>
 <publisher>Morgan Kaufmann
 Publishers</publisher>
 <price>89.95</price>
 </book>
</library>

Figure 2. Sample input XML data (library.xml)

5.2. Sample behavioural requirements

Based on the specification given in Section 5.1, a

behavioural requirement tuple, S, is provided manually

by the tester. The behavioural requirements in this case

study will be composed by the following elements:

─ The relaxed specification-compliant query, , in

Figure 3 represented in the XQuery language (other

languages could be used instead). The query

specifies an output composed by the books from the

file library.xml, enclosed between cheapBooks

element tags. Each book contains its title, publisher

and price, and the publication year as the element

publicationYear. This query has been obtained by

omitting the limit amount of 70$ and the ordering

by the year and price. The relaxed specification-

compliant query could be constructed in many other

ways; for example omitting the ordering by one of

the fields or the limit amount only.

─ The inserted nodes set {cheapBooks,

publicationYear}. is complete according to the

specification because it contains every node in the

expected output that is not in the input (Figure 2).

 could also be specified as an incomplete set if we

ignore any of its current members (cheapBooks

and/or publicationYear).

─ The excluded nodes set {library, author,

@year}. In the expected output, the node library is

replaced by the element cheapBooks, the element

author is not required, and the attribute node year

is substituted by the element publicationYear.

─ The ordering specification represented by the set

 {(/cheapBooks/book/publicationYear,),

 (/cheapBooks/book/price,)}.

The ordering is the same as the specification;

however, it could alternatively establish an ordering

by publicationYear or by price only, or by none

of them. The node references have been represented

as XPath expressions, but it is not mandatory.

As seen, alternative behavioural requirement tuples

with different levels of detail could be constructed.

Nonetheless, in further sections we are going to

consider only the given behavioural requirements.

<cheapBooks>{
 for $b in doc("library.xml")/library/book
 return
 <book>
 <title>{$b/title/text()}</title>
 <publisher>
 {$b/publisher/text()}
 </publisher>
 <price>{$b/price/text()}</price>
 <publicationYear>
 {fn:data($b/@year)}
 </publicationYear>
 </book>
}</cheapBooks>

Figure 3. Relaxed specification-compliant query (.

5.3. Fault detection

Suppose that an incorrect target program is

implemented as the XQuery expression shown in

Figure 4. The expression has some injected faults that

will be detailed later on in this section. Hence, due to

the presence of faults, the partial oracle verdict should

be a “Fail” response.

The actual output of the target program (Figure 4)

is represented in Figure 5. It has been obtained from the

input shown in Figure 2.

for $b in doc("library.xml")//book
 let $maxPrice := 70.0
 where $b/price <= $maxPrice
 order by $b/@year ascending,
 $b/price ascending
 return
 <book>{$b/@year}
 <author>{$b/title/text()}</author>
 <publisher>
 <price>{$b/price/text()}</price>

 {$b/publisher/text()}
 </publisher>

 <publicationYear>
 {fn:data($b/@year)}

 </publicationYear>
 </book>

Figure 4. Target program () with faults.

<book year="1994">
 <author>TCP/IP Illustrated</author>
 <publisher><price>45.95</price>
 Addison-Wesley</publisher>
 <publicationYear>1994</publicationYear>
</book>
<book year="1994">
 <author>Advanced Programming in the Unix
 environment</author>
 <publisher><price>65.95</price>
 Addison-Wesley</publisher>
 <publicationYear>1994</publicationYear>
</book>

Figure 5. Actual output ().

The partial oracle takes the requirements provided

by the tester (Section 5.2), the input in Figure 2, and the

actual output in Figure 5 to evaluate the fulfilment of

the oracle constraints proposed in Section 3. The results

of the evaluation are presented below, showing each

constraint result individually. Note that the partial

oracle must decide when to give a response and stop the

evaluation when faults are encountered.

─ Constraint 1 (Inclusion in relaxed output): The

constraint is not satisfied, because the actual output

 contains the author node, which is not

included in . The constraint 4 will detect a fault

due to the presence of the author node in the actual

output. This overlapped detection is a consequence

of treating each constraint independently from the

others.

─ Constraint 2 (Inclusion of root nodes in relaxed

output): Being {book} and

 {cheapBooks}, we have evidence

that the target program retrieves books, but the

cheap books are missing. This shows that the

constraint can detect the fault despite the fact that

the books in the actual output comply with the

definition of a cheap book (with price less than or

equal to 70$) given by the specification in Section

5.1.

─ Constraint 3 (Hierarchy consistency): In the actual

output , price publisher

is true, while price publisher

is false. Then, the target program contains a faulty

transformation involving the node price.

─ Constraint 4 (Absence of unexpected nodes): The

constraint detects the wrong selection of the author

node in the actual output . In fact, it is a bad

node definition in the target program, in which the

title node has been mistaken as author.

─ Constraint 5 (Presence of expected nodes): A fault

is detected, because there is a missing insertion of

the node cheapBooks.

─ Constraint 6 (Inserted nodes contained in the

complete set): The set given in Section 5.2 is

complete. Then, the constraint detects an

unexpected inclusion of the attribute node @year,

because {@year}, which implies

.

─ Constraint 7 (Correct ordering): The actual output

of the example in does not hold the ordering

pair (/cheapBooks/book/price,). Then, this

constraint detects an ordering fault.

Each of the detected faults could be shown to the

tester as human-readable messages in order to ease the

debugging of the target program. For example, the fault

message derived from the constraint 7 could be: “The

element node /cheapBooks/book/price is not sorted in

descendant order.”

To end this case study, a possible specification-

compliant query () is shown in Figure 6. Note that the

specification-compliant query has been determined

manually from the textual specification. Here it is

presented for illustrative purposes only, but actually it

would not be available.

<cheapBooks>{
 for $b in doc("library.xml")/library/book
 let $maxPrice := 70.0
 where $b/price <= $maxPrice
 order by $b/@year ascending,
 $b/price descending
 return
 <book>
 <title>{$b/title/text()}</title>
 <publisher>{$b/publisher/text()}
 </publisher>
 <price>{$b/price/text()}</price>
 <publicationYear>
 {fn:data($b/@year)}
 </publicationYear>
 </book>
}</cheapBooks>

Figure 6. Specification-compliant XML query ().

The correct expected output of the query in Figure 3

is shown in Figure 7. As with the specification-

compliant query, it is presented for illustrative

purposes.

<cheapBooks>
 <book>
 <title>Advanced Programming in the Unix
 environment</title>
 <publisher>Addison-Wesley</publisher>
 <price>65.95</price>
 <publicationYear>1994</publicationYear>
 </book>
 <book>
 <title>TCP/IP Illustrated</title>
 <publisher>Addison-Wesley</publisher>
 <price>45.95</price>
 <publicationYear>1994</publicationYear>
 </book>
</cheapBooks>

Figure 7. Expected output ().

If the specification-compliant query in Figure 6 is

provided as the target program and the behavioural

requirements of Section 5.2 are supplied, the oracle will

give a “Pass” response.

6. Related work

Weyuker [7] presents the non-testable programs as

those for which it is not possible to obtain a test oracle,

either because it does not exist, or because it is difficult

to obtain in practice. The latter is the case of XML

query testing due to the complex structure and volume

of the output data, and the huge expressiveness

provided by the query languages involved in the tests.

Weyuker states that partial oracles are suited to check

the execution of non-testable programs. Also, Bertolino

[1] states that partial oracles may be the only viable

solution to oracle automation.

Several works also apply partial oracles to particular

types of target programs. Hunter and Strooper [4]

propose a method to obtain partial oracles from event

models to test concurrent programs. Ran et al [6]

provide a testing framework for Web database

applications based on partial oracles, addressing the

evaluation of the database status, but not the queries.

Chen et al [3] develop the theory of metamorphic

testing, which presents similarities with partial oracles

in the sense that metamorphic relations can be

understood as oracle constraints. However,

metamorphic testing is more oriented to the test case

generation, and the correctness concluded by

metamorphic relations is based on multiple executions

of the target program and not on expected results

inferred from requirements.

Willmor and Embury [8] propose an approach to

specify intensional test cases for relational database

applications. The intensional database test cases are

formed by preconditions that specify the initial state of

the database, and postconditons that must hold after

execution of the target program. While the

preconditions are outside the scope of the present work,

the postconditions have an equivalent purpose to the

partial oracle we presented, but the major differences

are (1) the target programs we addressed (XML

queries), which provide more complex capabilities such

as for data transformation, and (2) the oracle constraints

we proposed, which set invariant conditions that are

known independently from the test cases details.

7. Conclusions and future work

The evaluation carried out by the proposed partial

oracle is based on a set of constraints that describe

invariant properties of the expected outputs. To check

the correctness of each test case execution, the

constraints are particularized using a tuple of

behavioural requirements provided by the tester. The

behavioural requirements for each test case are loose,

thus simpler than a full specification. Furthermore, the

requirements are represented in a familiar notation for

the tester (XML queries and sets of node names).

It is expected that once the tester provides the

behavioural requirements, the oracle will be able to

perform the evaluation without human intervention,

thus giving a response automatically. It should be

clarified that oracle automation has not been developed

in this work, since the approach does not detail how the

oracle constraints should be evaluated.

Because the constraints set only necessary

conditions to verify the test executions, the verdict of

the partial oracle cannot conclude the correctness with

total certainty, as it can only guarantee whether some

types of faults are present. For example, the proposed

constraints are unable to detect wrong values on atomic

types [12] (for example, integers or strings) located in

the actual output of the test.

The immediate future work includes definition of

more oracle constraints to improve the intrinsic

precision of the partial oracle.

A suitable paradigm to implement an automated

tool based on the proposed partial oracle could be a

rule-based system [2], in which the oracle constraints

could be represented by rules, and the behavioural

requirements could be treated as rule variables. The

order in which the constraints are evaluated is important

to improve the performance of the partial oracle, or to

help in the debugging process since the correction of an

error may fix other derived errors. In a rule-based

system this could be achieved by establishing rule

priorities.

Another possible line of work could be devoted to

adapt the oracle to cover other target programs besides

XML queries, such as SQL for relational data.

8. Acknowledgements

This work was partially funded by the Department

of Education and Science (Spain) and ERDF funds

within the National Program for Research,

Development and Innovation, project Test4SOA

(TIN2007-67843-C06-01) and the RePRIS Software

Testing Network (TIN2007-30391-E).

9. References

[1] A. Bertolino, “Software Testing Research:
Achievements, Challenges, Dreams”, International
Conference on Software Engineering 2007: Future of
Software Engineering, IEEE Computer Society, 85-103,
2007.

[2] B.G. Buchanan, R.O. Duda, “Principles of Rule-Based
Expert Systems”, Stanford University, CA, USA, 1982.

[3] T.Y. Chen, F.-C. Kuo, T.H. Tse, Z.Q. Zhou,
“Metamorphic Testing and Beyond”, Proceedings of the
Eleventh Annual International Workshop on Software
Technology and Engineering Practice, 00: 94:100,
2003.

[4] C. Hunter, P. Strooper, “Systematically deriving partial
oracles for testing concurrent programs”, ACM
International Conference Proceeding Series, In
Proceedings of the 24th Australasian conference on
Computer science, 11: 83-91, 2001.

[5] D.S. Kim-Park, C. de la Riva, J. Tuya, J. García-Fanjul,
“Generating Input Documents for Testing XML Queries
with ToXgene”. Testing: Academic and Industrial
Conference – Practice and Research Techniques, Fast
Abstract Track, 2008

[6] L. Ran, C. Dyreson, A. Andrews, R. Bryce, C. Mallery,
“Building test cases and oracles to automate the testing
of web database applications”, Information and
Sofwtare Technology, Butterworth-Heinemann, Newton,
MA, USA, 51 (2): 460-477, 2009.

[7] E.J. Weyuker, “On Testing Non-testable Programs”, The
Computer Journal, 25(4): 465-470, 1982.

[8] D. Willmor, S.M. Embury, “An intensional approach to
the specification of test cases for database applications”,
In Proceedings of the 28th International Conference on
Sofwtare Engineering, Shangai, China, 102-111, 2006.

[9] World Wide Web Consortium, “Extensible Markup
Language (XML)”, http://www.w3.org/TR/REC-xml/,
2008.

[10] World Wide Web Consortium, “XML path language 2.0
(XPath 2.0)”, http://www.w3.org/TR/xpath20/, 2007.

[11] World Wide Web Consortium, “XQuery 1.0. An XML
query language”, http://www.w3.org/TR/xquery/, 2007

[12] World Wide Web Consortium, “XQuery 1.0 and XPath
2.0 Data Model (XDM)”, http://www.w3.org/TR/xpath-
datamodel/, 2007.

[13] World Wide Web Consortium, “XQuery 1.0 and XPath
2.0 Functions and Operators”,
http://www.w3.org/TR/xpath-functions/, 2007.

