
© 2004 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for resale
or redistribution to servers or lists, or reuse of any copyrighted component of this work in
other works. Original publication: Proceedings of the 11th International Workshop on
Software Technology and Engineering Practice (STEP 2003).

A modular tool for automated coverage in software testing

Eugenia Díaz, Javier Tuya, Raquel Blanco

 Department of Computer Science, University of Oviedo

Campus de Viesques s/n, Gijón, Asturias

33203 Spain

[eugenia, tuya, rblanco]@lsi.uniovi.es

Abstract. Software testing is an expensive and difficult process which need much time. For this

reason, the existence of tools that allow to decrease this effort is very important. Our tool

automatically generates test cases in order to obtain branch coverage in software testing from a

source code. All process is automatic (source code instrumentation and test cases generation) and

therefore the total time used in software testing is reduced. We describe the modules of the tool

and present the result we have obtained compared the needed time to generate the test cases with

manual instrumentation and the needed time with an automatic process.

Keywords. Automated software testing, software testing tools, automated instrumentation, branch

coverage, tabu search.

1. Introduction

Software testing is an expensive process, typically consuming at least 50% of the total costs involved

in software development [1]. With techniques for automating the generation of software testing, we

will be able to test the software more efficiently while reducing the time taken up by this task, thus

reducing the cost and increasing the quality of the final product.

Although there are a lot of testing techniques [1], the important “craft” aspect that they entail has

produced a natural interest in the automation of the process of creating software test cases. Among the

different approaches used for the automation of this process, we may distinguish between random

techniques [12] (test data are generated randomly to cover the input variables domains as much as

possible), static techniques [4] (the program under test is not executed) and dynamic techniques [9]

(which carry out a direct search of the test data through the execution of the program, which has to be

previously instrumented).

There are several types of tools in order to facilitate the software testing process, and they have

different functionalities. Among these functionalities we can find the following ones: to automate the

path achieved in source code by a test case [2], to automate the execution of software tests [13] and to

automate the generation of test cases by means of the instrumentation of the source code under test [3],

[5], [10], [11], [14]. This instrumentation can be in automatic way or by hand.

Our tool allows to generate automatically branch coverage software test cases for programs written

in C/C++. This automation affects to the source code instrumentation and to the test case generation.

Besides, it allows to use several test cases generators, being independent of them.

2. Automatic tool description

The implemented tool has several modules:

 Parser: it generates the control flow graph of the source code under test.

 Instrumenter: it generates the instrumented source code.

 Test cases generator: it generates the test cases, using the instrumented source code and the

control flow graph.

The scheme of our tool appear in Figure 1.

Figure 1. Automatic Tool Scheme

A parser has been developed that generates a file with the control flow graph from the source code

of the program that is going to be tested. Each graph node stores important information that is used in

the testing process. The instrumenter then reads the source file and instruments the program under test

using the control flow graph. Finally, the test case generator is executed from the instrumented source

code and its complexity graph: in each iteration it generates test cases for the program under test and

executes it with them to store their behavior. The generator finishes when it obtains a desired branch

coverage percentage or reaches the maximum number of attempts allowed.

2.1 Parser

The parser carries out the control flow graph, following the language grammar (C++) of the

program under test.

Figure 2 shows an example of a complexity graph construction. A complexity graph has at least one

node. This node is node 0 and marks the beginning of the control flow. When an if sentence is found in

the program, a new node with the condition is created. This node represents the content of the if part.

When the else part is detected, another node is created, whose condition corresponds to the negation of

the condition. This node represents the content of the else part. Finally, a fictitious node is created to

close the if-else block, when its end is detected. If the conditional statement has an if part and an else

part, the node that closes the block joins the two branches corresponding to both parts. If the statement

has not else part, the final node joins the branch of the if part to the initial node of this branch. Thus, it

is possible to arrive at the node if the condition is true or false. This last node is a sentence node.

cond1 = a < 5 || b-1 > 10
cond2 = c && d || e && f

if (a < 5 || b-1 > 10)

 if (c && d || e && f)

 a++;

 b--;

else

 b++;

1

0

2

3

4

5

cond2 ! cond2

cond1 ! cond1

Fictitious node

Fictitious node

Condition

node

Sentence node

Condition

node

Condition

node

0

1 5

2 3

6

Figure 2. Example of graph generation.

The information that the test case generator needs to work correctly is stored during the generation

of the control flow graph. This information consists of the best solution that a node reaches and its cost

and the best solution that its children could reach and their respective cost. The conditions of the

nodes, the best solutions and the costs are recovered during the testing process.

2.2 Instrumenter

The instrumenter produce the instrumented code that the test cases generator needs for its execution.

This module reads the source code, and using the control flow graph, changes the conditions of the

control flow statements and inserts additional instructions, which are known by the test case generator.

When the instrumented code of a condition is generated, the condition includes a transformation in

which the relational operations turn into arithmetic expressions that are stored in a stack called the

expressions stack. The new condition consists of arithmetic expressions, related to logic operators.

Each expression, logic operator and bracket occupies a position in the expressions stack. Figure 3

shows the transformation of the relational expressions. The contents of the expressions stack are

defined by means of a grammar according to which the code for each AND subexpression and OR

subexpression are generated.

expr1 == expr2
!=

|expr2 - (expr1)|

== !=

expr2

expr1 |expr1 - (expr2)|

Operators == and !=Operators < and <=

< <=

expr2

expr1

expr1 < expr2
<=

expr2 - (expr1)

expr2 - (expr1)

Operators > and >=

expr1 > expr2
>=

expr1 - (expr2)

expr1 - (expr2)

> >=

expr2

expr1

Figure 3. Transformation of relational expressions.

The syntactic tree (Figure 4) shows the evaluation order for the expressions, which is determined by

the grammar of the expressions stack, where the AND operator has priority over OR operator. The

instrumentation is performed following this evaluation order. In the first place, the instrumenter

generates code for “c && d”, then for “e && f ” and finally for the OR expression.

ExprOr

||ExprAnd

c && d

ExprAnd

e && f1º 2º

3º

Evaluation

Evaluation

Figure 4. Syntactic tree.

When the instrumenter finds a NOT operator in the expressions stack, this operator is propagated by

the grammar, until arriving at terminal expressions, causing an AND operator to become an OR

operator and vice versa. In order to realize this treatment, the priorities of the operators are inverted,

i.e. the OR will have precedence over the AND.

2.3 Test cases generator

This module is in charge of generating test cases, using some of the existing techniques, for example,

random, tabu search [6], [7] and genetic algorithms [8]. The results presented in this paper have been

obtained using two different test cases generator: one based on tabu search and another based on

random technique.

3. Results

In this section, we study the efficiency of our tool, using a famous benchmark in software testing: the

classify triangle program for real input variables with 3 digits of real precision. We compare the total

time needed to carry out the test using a manual instrumentation and using an automated

instrumentation. This total time consist of the instrumentation time and the run time.

We execute the benchmark with a manual instrumentation and an automated instrumentation for the

random technique and the tabu search technique. Figures 5 and 6 show the results. In these Figures, the

horizontal axis represents the time in seconds (it is showed in a logarithmic 10 scale) and the vertical

axis the % accumulated branch coverage.

When the instrumentation is by hand, as it is seen in the figure 5, the needed time to carry out the

instrumentation of the program under test is much greater when a no-random technique is used. On the

other hand, the random testing is faster than tabu search until it achieves about 65% branch coverage,

but from this point, the tabu search obtains better results, reaching furthermore, 100% coverage.

Therefore the tabu search achieves better coverage results and its run time is less than random

technique.

Figure 5. % accumulated coverage vs. total time for the Triangle problem (manual instrumentation)

The manual instrumentation time increases exponentially to the number of branches of the program

under test. So, more complex programs have more instrumentation cost.

When the instrumentation is automatic, as it is seen in the figure 6, again the tabu search achieve

100% coverage, whereas the random technique doesn’t reach it. Besides, the obtained times

(instrumentation + run) for both techniques are very similar among themselves, due to the elimination

of the cost to perform the manual instrumentation. Moreover, these times are much less than the total

times obtained with the manual instrumentation.

Figure 6. % accumulated coverage vs. total time for the Triangle problem (automatic instrumentation)

In short, our tool allows to decrease the testing time and furthermore another very important aspect, it

eliminates the introduction of errors due to the manual instrumentation.

4. Conclusions and further work

Our tool allows to instrument automatically a program written in C/C++ and to generate automatically

branch coverage software test cases.

When a program is tested, the needed time consists of instrumentation time and running time. If the

instrumentation is by hand, the first one is much greater than the second one, and therefore it interests

to decrease it by means of its automation.

With our modular tool we have achieved to decrease the total time needed to carry out coverage in

software testing. Besides, the introduction of errors in the instrumentation is avoided due to the

automation of this process.

The modularity of the tool allows to use automatically different techniques for the generation of

coverage software test cases.

We are currently working on improving the tool by means of using another type of software

coverage (path coverage, multiple condition coverage and loop coverage).

Acknowledgements

This work was funded by the Department of Science and Technology (Spain) under the National

Program for Research, Development and Innovation, project TIC2001-1143-C03-03

References

[1] Beizer, B. Software Testing Techniques. 2nd. Ed. Van Nostrand Reinhold. 1990

[2] Cantata: http://www.iplbath.com

[3] Chang, K., Cross, J., Carlisle, W., Liao, S. A performance evaluation of heuristics_based test case

generation methods for software branch coverage. International Journal of Software Engineering

and Knowledge Engineering, 6(4):585-608. 1996

[4] DeMillo, R. A., Offutt, A. J. Constraint-based automatic test data generation. IEEE Transactions

on Software Engineering, 17(9):900-910. 1991.

[5] Gallagher, M. J., Narasimhan, V. L. Adtest: a test data generation suite for ada software systems.

IEEE TSE, 23(8): 473-484. 1997

[6] Glover, F. Tabu search part i. ORSA Journal on Computing, 1(3):190-206. 1989.

[7] Glover, F. Tabu search part ii. ORSA Journal on Computing, 2(1):4-32. 1990.

[8] Goldberg, D. Genetic Algorithms in search, optimization, and machine learning. Addison-Wesley,

Reading, MA.1989.

[9] Korel, B. Automated software test data generation, IEEE TSE, 16(8): 870-879. 1990.

[10] Meudec C. ATGen: automatic test data generation using constraint logic programming and

symbolic execution. Journal of Software Testing, Verification and Reliability, 11(2):81-96. 2001

[11] Michael, CC., McGraw, G., Schatz MA. Generating software test data by evolution. IEEE TSE,

27(12):1085-1110. 2001

[12] Ntafos, S. On random and partition testing, Intl. Symp. on Software Testing and Analysis. 1998

[13] Rational: http://www.rational.com

[14] Wegener, J., Baresel, A., Sthamer, H. Evolutionary test environment for automatic structural

testing. Information & Software Technology, 43(14): 841-854. 2001

