
© 2009 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. Original publication: Proceedings of the
2009 International Conference on Software Testing, Verification and Validation Workshops

A first approach to test case generation for BPEL compositions of web

services using Scatter Search

Raquel Blanco, José García-Fanjul, Javier Tuya

Computer Science Department, University of Oviedo

Campus Universitario de Gijón s/n, Gijón, SPAIN

rblanco@uniovi.es, jgfanjul@uniovi.es, tuya@uniovi.es

Abstract

A challenging part of Software Testing entails the

generation of test cases, which cost can be reduced by

means of the use of techniques for automating this

task. In this paper we present an approach based on

the metaheuristic technique Scatter Search for the

automatic test case generation of the BPEL business

process. A transition coverage criterion is used as

adequacy criterion.

1. Introduction

A challenging part of Software Testing entails the

generation of test cases, which cost can be reduced by

means of the use of techniques for automating this task.

In service oriented architectures the deployment of

software as a service has the objective, in the short or

medium term, that these services will be invoked from

other software or services. Thus, using well-established

and automated testing techniques is essential to firstly

assure the quality of the deployed services and, also,

facilitate regression testing.

The search for an optimal solution in the test case

generation problem has a great computational cost and

for this reason these techniques try to obtain near

optimal solutions. As a consequence, they have

attracted growing interest from many researchers in

recent years. On the other hand, the nature of Software

Engineering problems is ideal for the application of

metaheuristic techniques, as is shown in the work of

Harman and Jones [19], and besides they obtain good

results in test case generations [24]. In this paper we

propose the use of the metaheuristic technique called

Scatter Search in the automatic generation of test cases

for web services compositions. The approach presented

in the paper is an evolution of the TCSS-LS algorithm

described in [7] which generates test cases for the

branch coverage criterion for programs written in C.

The rest of the paper is organized as follows. The

next section presents an overview of related studies.

Section 3 details our Scatter Search approach for the

automatic generation of test cases. In Section 4 we

present the preliminary results and Section 5 presents

the conclusions of this paper.

2. Background

2.1. BPEL business processes

BPEL specifications represent the behaviour of

business processes based on web service compositions.

They are XML documents composed of two main

sections: declarations and the specification of the

business process itself. In the declarations part,

partnerlinks and portTypes are identified: each

partnerlink stands for a service that interacts with the

business process and portTypes define the details of the

interfaces between services and the business process.

Other elements included in this first part are the

variables, which enable the intermediate storage of

values.

The specification of the business process consists of

a set of activities that can be executed. These activities

may be either basic or structured. Among the former,

the business process can invoke web services or receive

invocations by means of the invoke and receive

activities. It can also update the values of the variables

using assign. Structured activities prescribe the order in

which a collection of activities take place. For

example: a sequence activity establishes a sequential

order and a while forces the repetition of the execution

of a set of activities until a given condition becomes

false. A structured activity that is not so common in

other languages is the flow. Activities grouped in such

are concurrent, and so a flow completes when all of its

activities have completed.

An extract of the sample BPEL business process

called “loan approval” is outlined in Figure 1. This

example was published within the specification of the

standard [30]. The goal of this business process is to

conclude whether a certain request for a loan will be

approved or not. To do so, it receives a request from a

partner called “customer” and invokes two other

partners. The “assessor” partner measures the risk

associated with low amount requests. Another partner,

called “approver”, approves requests that are either

made for a large amount of money or which are

evaluated by the assessor as not having a low risk.

<process name="loanapproval" [...]>

 <-- declarations -->

 <variables>

 <variable name="riskAssessment"

 messageType=

 "asns:riskAssessmentMessage"/>

 [...]

 </variables>

 <partners>

 <partner name="customer" [...]/>

 <partner name="assessor" [...]/>

 <partner name="approver" [...]/>

 </partners>

 <-- behaviour of the business process -->

 <flow>

 <links>

 <link name="receive-to-assess"/>

 <link name="assess-to-setMessage"/>

 [...]

 </links>

 <receive name="receive1"

 partner="customer" [...]>

 [...]

 </receive>

 <invoke name="invokeAssessor"

 partner="assessor"

 portType="asns:riskAssessmentPT"

 operation="check"

 inputVariable="request"

 outputVariable="riskAssessment">

 <target linkName="receive-to-assess"/>

 <source linkName="assess-to-setMessage"

 transitionCondition=

 "bpws:getVariableData

 ('riskAssessment','risk') ='low'"/>

 <source linkName="assess-to-approval"

 transitionCondition="

 bpws:getVariableData

 ('riskAssessment','risk') !='low'"/>

 </invoke> [...]

 </flow>

</process>

Figure 1. Extract from the “loan approval”

BPEL specification

2.2. Scatter Search technique

Scatter Search [18][21] is an evolutionary method

that works on a population of solutions of the problem

to be solved, which are stored in a set of solutions

called the Reference Set. The solutions in this set are

combined in order to obtain new ones, trying to

generate each time better solutions, according to

quality and diversity criteria.

The basic scheme of the Scatter Search algorithm

can be seen in Figure 2 [21]. The Scatter Search

algorithm begins by using a diversity generation

method to generate P diverse solutions, to which an

improvement method is applied. Then the Reference

Set is created with the best solutions from P and the

most diverse in relation to the solutions already in the

Reference Set. As new solutions are generated, the

algorithm produces subsets of the Reference Set using

a subset generation method, and applies a solution

combination method in order to obtain new solutions,

to which an improvement method is applied. Then a

Reference Set update method evaluates the new

solution to verify whether they can update the

Reference Set, as they are better than some solutions

stored in the set. If so, the best solutions are included in

the Reference Set and the worst solutions are dropped.

So, the final solution of the problem to solve is stored

in the Reference Set.

Diversification

Generation Method

Improvement

Method

Reference Set

Update Method

Solution Combination

Method

Subset Generation

Method

Repeat until

|P| = PSize

P

Improvement

Method

Stop if no more

new solutions

RefSet

Figure 2. Basic scheme of Scatter Search

2.3. Metaheuristic search techniques in test

case generation

The application of metaheuristic algorithms to solve

problems in Software Engineering was proposed by the

SEMINAL network (Software Engineering using

Metaheuristic INnovative ALgorithms) and is widely

explained in [10]. One of these applications is software

testing, in which the testing problem is treated as a

search or optimization problem, as is shown in several

surveys [24][26].

The most widely used metaheuristic technique in

this yield is Genetic Algorithms. This technique is used

in many papers to achieve several coverage criteria

[28][35][3][36][2][17]. Other papers apply Genetic

Algorithms to generate test cases to cover string

predicates [4], to detect overflows [11], to regression

test case prioritization [22], to train a series of decision

tree in order to create rules for classifying test cases

[34] and to generate test data that cause service level

agreement violations in service-oriented systems [12].

Simulated annealing has been used to generate test

cases to achieve several coverage criteria [23][36] and

it has been used in the investigation of measures of

landscape to apply this technique to test generation

[33]. Genetic Programming has been used in the

classification task in the context of data mining of

relational databases and the selection of test cases using

the mutation testing adequacy criterion in the context

of software testing [32]. Tabu Search has been used to

obtain branch coverage [14] and path and loop

coverage [13]. Simulated Repulsion has been used to

generate diverse test data and evaluate the effect of

diversity on data flow coverage and mutation testing

[8]. Evolutionary algorithms are been used in the

automation of functional testing [9], and their

principles are been combined with an extended

chaining approach to find test cases that cover a target

[27]. Hill Climbing has been used in the regression test

case prioritization [22]. Evolutionary Strategies has

been used to achieve condition coverage [3].

Estimation of Distribution Algorithms has been used to

obtain branch coverage [31].

Another metaheuristic technique that can be applied

to automatic test case generation is Scatter Search. This

technique has been used to solve many problems, as is

shown in [25]. However, the only papers that use the

Scatter Search technique to automate the generation of

test cases are [6][7][31], which use this technique to

obtain branch coverage.

2.4. Test case generation for BPEL business

processes

There is not a great amount of research on the

definition of testing methods for compositions of web

services, and much of the published work has been

devoted to monitoring approaches [1][5][29]

Regarding the generation of test cases, Huang et al.

[20] describe a method to test composite web services

using model checking. The main differences with our

aproach lie in the input and the testing criteria: they

explicitly specify the behaviour of each web service in

the composition (using OWL-S) and define the desired

properties by hand. García-Fanjul et al. [16] do also

use a model checker (SPIN) to generate test cases but

they systematically select the test cases using a

transition coverage criterion. Also, Dong et al [15] use

High level Petri Nets to model BPEL business

processes and generate test cases. Metaheuristic search

techniques have not been used to generate test cases for

BPEL business process yet.

3. Test case generation for BPEL business

processes using scatter search

In this section we explain our adaptation of the

Scatter Search technique to the automatic generation of

test cases for BPEL business processes using a

transition coverage criterion. In Section 3.1 we present

the general aspects of our Scatter Search approach

called TCSS-LS. Sections 3.2 and 3.3 show the search

process of new test cases.

3.1. Problem approach

Our objective is to test BPEL compositions of web

services. The input variables of the business process

are the variables received from the web services (called

partners in BPEL) that interact in the BPEL

specification. A test case is defined by means of the

values of the input variables and the transitions of the

business process executed.

The BPEL specification does not directly include

information about the behaviour of the different web

services that participate in the business process, so a

mock model will be constructed for each partner based

upon its interface with the business process.

The BPEL business process is represented by means

of a state graph where the nodes represent the states of

the business process and the arcs represent the change

of state from node i to node j when the associated arc

decision is true, i.e., an arc represents a transition in the

business process and it has its own Reference Set. By

means of this state graph, it is possible to determine the

transitions covered by the test cases generated, since

the business process has been instrumented to know the

followed path.

Figure 3 shows the state graph that represents the

“loan approval” business process (a extract of the

BPEL specification can be seen in Figure 1). Each

transition of the business process is numbered as Tk.

Note that some transitions are not numbered in the

graph, as they are covered by test cases that cover other

transitions or sets of transitions. For instance, if a test

suite covers transitions T2 and T4, then the transition

from “invoke approver” to the final state will be

covered.

receive (from

customer)

invoke

assessor

[request.amount

< 100]

approvalInfo.accept

= yes

invoke

approver

[request.amount

>= 100]

[riskAssessment

== low] [riskAssessment

!= low]

/reply (to customer)

T1 T2

T3

T4

T0

/reply (to customer)

Figure 3. State graph of “loan approval”

service

The goal of TCSS-LS is to generate test cases that

allow all transitions of the business process to be

covered. This general goal is divided in subgoals, each

of which consists in finding test cases that reach a

particular arc (transition) Tk of the state graph.

In order to reach the subgoals, the transitions of the

state graph store information during the process of test

case generation. This information allows the covered

transitions to be known and is used to make progress in

the search process. Each transition stores this

information in its own set of solutions, called

Reference Set. Unlike the original Scatter Search

algorithm, our approach has several Reference Sets.

Each Reference Set is called Sk, where k is the number

of the transition, and is formed by Bk elements Tk
c =

< x k
c,pk

c, fbk
c,fck

c>, c {1..Bk}, where:

 x k
c is a solution, i.e., a test case that reaches

transition Tk. Each solution x k
c consists of a set of

given values for the input variables (x 1, x 2,..., x n)

of the business process under test that satisfy the

transitions of the previous transitions to transition Tk

on the path that has been followed. Each input

variable is represented as a vector since a web

service can be invoked several times and each

invocation provides an independent value.

 pk
c is the path covered by the solution (test case), i.e.,

the sequence of the transitions of the state graph

reached by the solution.

 fbk
c is the distance to the sibling transition. This

distance indicates how close the solution came to

cover the sibling transition.

 fck
c is the distance to the next transition that has not

been reached by the solution. This distance indicates

how close the solution came to cover this transition.

An example of the state graph with the information

stored in the Reference Sets of the transitions can be

seen in Figure 4.

The procedure followed to calculate the maximum

size Bk of the set of solutions of a transition Tk (Sk) and

the calculation of the distances can be consulted in [7].

T1

T2

T3

T4

. . .

 1

1

1

1

1

1

1

1

1

1 fc,fb,p,xT

 2

1

2

1

2

1

2

1

2

1 fc,fb,p,xT

 B1

1

B1

1

B1

1

B1

1

B1

1 fc,fb,p,xT

Set S1

 1

2

1

2

1

2

1

2

1

2 fc,fb,p,xT

 2

2

2

2

2

2

2

2

2

1 fc,fb,p,xT

 B2

2

B2

2

B2

2

B2

2

B2

2 fc,fb,p,xT

. . .

Set S2

. . .

1
0

1
0

1
0

1
0

1
0 fc,fb,p,xT

 2

0

2

0

2

0

2

0

2

1 fc,fb,p,xT

 B0

0

B0

0

B0

0

B0

0

B0

0 fc,fb,p,xT

Set S0

Set S3

 1

3

1

3

1

3

1

3

1

3 fc,fb,p,xT

 2

3

2

3

2

3

2

3

2

3 fc,fb,p,xT

 B3

3

B3

3

B3

3

B3

3

B3

3 fc,fb,p,xT

. . .

T0

Set S4

. . .

 1
4

1
4

1
4

1
4

1
4 fc,fb,p,xT

2
4

2
4

2
4

2
4

2
4 fc,fb,p,xT

 B4
4

B4
4

B4
4

B4
4

B4
4 fc,fb,p,xT

Figure 4. TCSS-LS state graph

TCSS-LS will try to make the sets as diverse as

possible using a diversity function. Thus it tries to

explore a wide search space in order to find solutions

that can cover different transitions of the composition.

The diversity of a solution of a set Sk is a measure

related to the path covered by all solutions of the set.

3.2. Search process

The goal of TCSS-LS is to obtain maximum

transition coverage, i.e., to find solutions that allow

coverage of all the transitions of the state graph. As

these solutions are stored in the transitions, our goal is

therefore all the transitions to have at least one element

in their set Sk. However, this goal cannot be reached

when the composition under test has unfeasible

transitions. Therefore, TCSS-LS also stops its

execution when a maximum number of test cases has

been generated. Initially, the sets Sk are empty and they

are filled by the generator by means of its iterations.

Figure 5 shows the scheme of the TCSS-LS search

process, which has been adapted to work with a state

graph instead of a control flow graph. This search

process starts generating random solutions that are

stored in the Reference Set of transition T0 (S0). The

model of the composition is executed with each

solution and the sets Sk of the transitions reached in this

execution are updated. A first step in a run consists of

configuring the partners with the values of the variables

that they return to the business process when they are

invoked. Then the iterations of the search process

begin. In each iteration, TCSS-LS selects a transition

(transition in evaluation) to form the subset of solutions

from its Reference Set, which are used by the

combination rules to generate the new solutions. These

new solutions, which can be improved, are also

executed in the model of the composition in order to

update the Reference Sets Sk of the transitions reached,

thus closing the cycle of execution. When a partner of

the composition needs more values for an input

variable of the business process under test, because it is

invoked more times, the partner asks TCSS-LS for new

values.

If the selected transition does not have at least two

solutions to perform the combinations, a backtracking

process, which is not considered in the original Scatter

Search algorithm, is carried out. This backtracking

process combines the Scatter Search technique with a

local search method.

The backtracking process, the combination rules and

the procedures followed to select a transition (similar

to the selection of a node in the control flow graph), to

form the subsets of solutions, to improve the solutions

and to update the sets Sk using the diversity property

can be consulted in [7].

The search process finishes when all transitions

have been reached or the maximum number of test

cases has been achieved.

The final solution of the generator consists of the

test cases that cover the transitions of the state graph,

which are in the sets Sk, the transition coverage reached

and the time consumed in the search process. For

example, a test case for the “loan approval” service

defined in Figures 1 and 3 has the inputs

request.amount = 50, risk.assessment = low and covers

the path formed by the transitions T0, T1, T3.

3.3. Treatment of the unfixed number of values

of an input variable

When a loop in the business process includes a web

service invocation, the variable (or variables) returned

by the partner has a different value in each iteration of

the loop, which can cover different transitions of the

business process and for this reason all these values of

the variable must be recorded to generate the test cases.

As the number of iterations of the loop is unknown in

most cases, an input variable can take an unknown

number of values in the execution of the web services

composition and the vector x j that represented it in the

solution x k
c can have different size in two specific

solutions.

Thus the TCSS-LS algorithm described in [7] has

been improved to include a new method to handle the

unfixed number of values of an input variable.

When a solution is created randomly TCSS-LS

generate a vector for each input variable situated inside

a loop with a fixed number of values. Then the partners

are configured with the vector of values of the variables

that they handle and the business process is executed.

Each partner consumes and returns a value of the

vector of the variable in each invocation and when it is

invoked and all the values of the variable are consumed

it asks TCSS-LS for new values.

TCSS-LS searches these new values for the input

variable among the solutions of the set Sk of the

transition in evaluation Tk. It tries to find the values

that are more diverse. Thus the “diversity of a variable”

function is calculated over the subset Sk’={Tk’
1,…,Tk’

q}

 Sk, Tk’
c=< x k’

c;pk’;fbk’
c;fck’

c>, which represents the

solutions stored in transition Tk that have not been

used to give new values to the partner. The diversity

value of a variable x j is calculated according the

“diversity of a variable” function defined as:

qc rz c
k

m
k

m
k

c
k

c
k

m
k

k
m
k

otherwisejxjx

zjxjx

zjxjx

Sjx_vardiv

zz

z

z

..1 ..1

''

''

''

''); of size if

 of size if

(

where index c=1..q covers the solutions of Sk’ and

index z=1..r covers the values of the input variable x j.

The less similar solution to the rest of solutions

according to the values of variable x j, i.e. the solution

with the high value for div_var(), is selected and the

values of the variable x j are given to the partner. Thus

the size of the vector of values of a variable of a

solution that is executed in the business process can be

increased.

After the business process finishes its execution

with a solution, it is analyzed to drop the values of the

variables that have not been used, thus decreasing the

size of the vectors.

On the other hand, the generation of new solutions

and the diversity function presented in [7] has been

adapted to handle the unfixed number of values of an

input variable.

When TCSS-LS combines two solutions (x k
c, x k

d)

g≠h in order to generate the new ones it applies the

combination rules over each input variable as follow:

-
otherwise

 of size if

z

z

d
k

c
kz

c
k

jx

zjxjx
jnew1

-
otherwise

 of size if

z

z

d
k

c
kz

c
k

jx

zjxjx
jnew2

-
otherwise

 of size if

z

z

c
k

d
kz

d
k

jx

zjxjx
jnew3

-
otherwise

 of size if

z

z

c
k

d
kz

d
k

jx

zjxjx
jnew4

where index j covers all input variables, index z covers

the positions of the vectors of the input variable x j and

z is defined as:

otherwise

 of size and of size if

0
2

zjxzjx
jxjx

d
k

c
k

d

k

c

k

z

zz

Transition

Selection Method

Solution Subset

Generation

Method

Ancestor Transition

Selection Method

Solution

Combination

Method

Local Search

Root node?

There exist

solutions to

combine?

Root node?

There exist

solutions to

combine?

All transitions reached?

Or

Max test cases

generated?

Yes Backtracking Process

No

- Test cases

- % Coverage

- Time

 consumed

S0

Generation of

Random Solutions

Run composition

under test with

each new solution

Regeneration

Method

Improvement

Method

Repeat until |S0| = S0Size

Yes

No

Yes

No

Yes

No

Yes No

Request more

values for an input

variable

RefSet

RefSet

RefSet
RefSet

Sk Update Method

Figure 5. TCSS-LS scheme (improved)

The solutions generated by means of the

combinations rules are executed in the composition

under test and whether a partner consumes all values of

the vector of a variable, it asks TCSS-LS for new

values as is indicated above.

When TCSS-LS uses the local search method, each

new solution is generated by means of the modification

of all positions of the vector of a specific variable,

according to the procedures described [7].

TCSS-LS applies the diversity function when it

needs to remove the less diverse solution from a set Sk

in the updating process. The diversity function is

applied over the subset Sp*={Tp*
1,…,Tp*

q} Sk,

Tp*
c=< x p*

c;pp*;fbp*
c;fcp*

c>, which represents the

solutions stored in transition Tk that cover the path pp*

with more occurrences in the set Sk. The diversity value

of a solution is calculated according the diversity

function defined as:

qc nj rz

j

c
p

m
p

m
p

j

c
p

c
p

j

m
p

pp
m
p

otherwise
range

jxjx

zjx
range

jx

zjx
range

jx

SSjxdiv

zz

z

z

..1 ..1 ..1

**

*

*

*

*

***);; of size if

 of size if

(

where index c=1..q covers the solutions of Sp*, index

j=1..n covers the input variables, index z=1..r covers

the values of the input variable x j and rangej is the

range of values of the input variable x j.

4. Case studies

We applied our first approach to two BPEL

specifications: the “loan approval” (which has also

been used to exemplify the method, see Figure 1 and

Figure 3) and the “shipping service”. Both of these

specifications were originally published within the

standard BPEL4WS and have been extensively

referenced in the literature on web services testing. The

“shipping service” composition describes a basic

shipping service that handles the shipment of orders. It

offers two types of shipments: shipments where the

items are held and shipped together and shipments

where the items are shipped piecemeal until all of the

order is accounted for. In order to check the methods

designed in our approach we have modified the

“shipping service” composition as is shown in Figure 6.

We have included the transitions T5 and T6 in order to

increase the complexity of the composition with an

equality condition.

receive (from

customer)

[shipRequest.shipComplete

== TRUE]

T1

T0

assign

(itemsCount)

invoke customer

(shippingNotice)

assign

(itemsShipped=0)

[shipRequest.shipComplete

!= TRUE]

T2

while

assing (opaque

to itemsCount)

invoke customer

(shippingNotice)

[itemsShipped <

shipRequest.itemsTotal][itemsShipped >=

shipRequest.itemsTotal]

assign (update

itemsShipped)
switch

invoke customer

(shippingNotice)

[itemsShipped ==

shipRequest.itemsTotal]

switch

T3

T4

T6

[itemsShipped !=

shipRequest.itemsTotal]

T5

Figure 6. State graph of “shipping service”

composition

The results obtained by TCSS-LS are compared

with those of a random generator. In all cases for our

experiments, the stopping condition used for the

generators was that of reaching 100% transition

coverage or reaching 200000 generated test cases, the

input variables of the compositions are integer and the

input range uses 16 bits. For each composition we

carried out 100 runs with the generators, taking average

values. All runs were carried out on a Pentium 4

processor 2.80GHz with a RAM memory of 512 MB.

Table 1 shows the results obtained for both

generators: percentage of transition coverage reached,

the number of test cases that the generator creates to

achieve this coverage and the time consumed (in

seconds). Note that the test case generators use a large

set of test cases to cover all transitions, because during

the search process they generate test cases that reach

transitions that had already been covered by other test

cases. However not all of them are included in the sets

Sk, (only the most diverse test cases are incorporated).

On the other hand, not all of the test cases stored in the

sets Sk form the set of test cases used in the test process

of the business process. To obtain the minimum set of

test cases that are executed in the composition under

test to cover all transitions during the test process we

select a test case from each set Sk. TCSS-LS generates

few test cases and consumes less time than the random

generator for both compositions. Besides the random

generator does not achieve 100% coverage, whereas

TCSS-LS always reaches total coverage.

Table 1. Results from “loan approval” and

“shipping service” compositions
 Loan Approval Shipping Service

 %

Cov.

Test

Cases

Time

(s)

%

Cov.

Test

Cases

Time

(s)

TCSS-LS 100 290 0.19 100 144 0.23

Random 99 54940 1.31 75 36436 0.69

Figure 7 despites the evolution of the number of test

cases generated for both generators for “shipping

service” composition. The horizontal axis represents

the number of test cases generated to achieve the

accumulated percentage of transition coverage

represented in the vertical axis. Figure 8 shows the

number of seconds consumed by the generators for the

“shipping service” composition to achieve each

accumulated percentage of transition coverage. In these

figures, it can be observed that TCSS-LS generates few

test cases and consumes less time than the random

generator to reach each percentage of transition

coverage.

0
10
20
30
40
50
60
70
80
90

100

1E+00 1E+03 1E+06
Number of test cases (log. escale)

%
 c

o
v
e

ra
g

e

TCSS-LS Random

Figure 7. Evolution of the test cases

generated for the “shipping service”

composition

0
10
20
30
40
50
60
70
80
90

100

0 0 0,01 0,1 1 10 100
Time in seconds (log. escale)

%
 c

o
v
e

ra
g

e

TCSS-LS Random

Figure 8. Evolution of time for the “shipping

service” composition

An example of a set of test cases obtained from the

sets Sk for the “shipping service” composition is shown

in Table 2. The selection process starts in the sets Sk of

the transitions that end in the final state and finishes

when all transitions have been covered by the test cases

selected. The first test case is selected from the set Sk

of transition T6 and covers transitions T0, T2, T4, T3

and T6. The second test case is selected from the set Sk

of transition T5, which covers the transition T5 that has

not been covered by the first test case. The third test

cases is selected from the set Sk of transition T1 and

now all transitions of the “shipping service

composition” have been covered by the test cases

selected.

Table 2. Example of test cases for the

“shipping service” composition
Id Input Variables Transitions

Covered shipRequest.

itemsTotal

opaque

values

shipRequest.

shipComplete

1 31767 1153

13691

16923

FALSE T0, T2,

T4, T3, T6

2 6435 32280 FALSE T0, T2,

T4, T3, T5

3 10247 - TRUE T0, T1

5. Conclusions and future work

This paper presents our first approach based on the

metaheuristic technique Scatter Search for the

automatic test case generation of the BPEL business

process to fulfil a transition coverage criterion. This

approach, called TCSS-LS, is an evolution of a

previous work.

The business process is modelled and represented

by a state graph. TCSS-LS handles a set of solutions in

each transition of the graph, thus facilitating the

division of the general goal in subgoals, and provides

mechanisms to handle the unfixed number of values of

the input variables.

The results obtained show that TCSS-LS can be

applied to the test case generation of BPEL business

processes and it outperforms the random generator.

Lines of future works are the use of other adequacy

criteria as transition-pair coverage criterion, the

improvement of TCSS-LS to handle the concurrent

execution of activities in BPEL web services

compositions, and the experimentation with real-life

specifications.

Acknowledgements

This work is supported by the Ministry of Science

and Innovation (Spain) under the National Program for

Research, Development and Innovation, projects

Test4SOA (TIN2007-67843-C06-01) and RePRIS

(TIN2007-30391-E).

References

[1] W.M.P. van der Aalst, M. Dumas, C. Ouyang, A.

Rozinnat, E. Verbeek, “Conformance Checking of Service

Behavior”. ACM Transactions on Internet Technology, 8(3),

2008

[2] M.A. Ahmed, I. Hermadi, “GA-based multiple paths test

data generator”, Computers and Operations Research,

35(10), 2008, pp. 3107-3124.

[3] E. Alba, F. Chicano, “Observations in using parallel and

sequential evolutionary algorithms for automatic software

testing”, Computers and Operations Research, 35(10), 2008,

pp. 3161-3183.

[4] M. Alshraideh, L. Bottaci, “Search-based software test

data generation for string data using program-specific search

operators”, Software Testing Verification and Reliability,

16(3), 2006, pp. 175-203.

[5] L. Baresi, S. Guinea, “Towards Dynamic Monitoring of

WS-BPEL Processes”, in: Proceedings of the 3rd

International Conference on Service Oriented Computing,

Amsterdam, 2005, pp. 269-282.

[6] R. Blanco, J. Tuya, E. Díaz, B. Adenso-Díaz, “A scatter

search approach for automated branch coverage in software

testing”, Engineering Intelligent Systems, 15 (3), 2007, pp.

135-142.

[7] R. Blanco, J. Tuya, B. Adenso-Díaz, “Automated test

data generation using a scatter search approach”, Information

and Software Technology, doi:10.1016/j.infsof.2008.11.001,

2008.

[8] P.M.S. Bueno, W.E. Wong, M. Jino, “Improving random

test sets using the diversity oriented test data generation”, in:

Proceedings of the Second International Workshop on

Random Testing, 2007, pp. 10-17.

[9] O. Bühler, J. Wegener, “Evolutionary functional testing”,

Computers and Operational Research, 35(10), 2008, pp.

3144-3160.

[10] J. Clarke, J.J. Dolado, M. Harman, R.M Hierons, B.

Jones, M. Lumkin, B. Mitchell, S. Mancoridis, K. Rees, M.

Roper, M. Shepperd, “Reformulating software engineering as

a search problem”, IEE Proceedings – Software, 150(3),

2003, pp. 161-175.

[11] C. Del Grosso, G. Antoniol, E. Merlo, P. Galinier,

“Detecting buffer overflow via automatic test input data

generation”, Computers and Operational Research, 35(10),

2008, pp. 3125-3143.

[12] M. Di Penta, G. Canfora, G. Esposito, V. Mazza, M.

Bruno, “Search-based testing of service level agreements”,

in: Proceedings of the 9th conference on Genetic and

Evolutionary Computation, 2007, pp. 1090-1097.

[13] E. Díaz, “Generación automática de pruebas

estructurales de software mediante Búsqueda Tabú”, PhD

Thesis Department of Computer Science, University of

Oviedo, 2004.

[14] E. Díaz, J. Tuya, R. Blanco, J.J. Dolado, “A tabu search

algorithm for Software Testing”, Computers and Operational

Research, 35(10), 2008, pp. 3052-3072.

[15] W.L. Dong, H. Yu, Y.B. Zhang, “Testing BPEL-based

Web Service Composition Using High-level Petri Nets”. In:

Proceedings of the 10th IEEE Int. EDOC Conf. Hong Kong

(2006), pp. 441-444.

[16] J. García-Fanjul, J. Tuya, C. de la Riva, “Generating test

cases specifications for BPEL compositions of web services

using SPIN”. In Proceedings of the Int. Workshop on Web

Services – Modeling and Testing. Palermo (2006), pp. 83-94.

[17] M.R. Girgis, “Automatic test data generation for data

flow testing using a genetic algorithm”, Journal of Universal

Computer Science, 11(6), 2005, pp. 898-915.

[18] F. Glover, M. Laguna, R. Martí, “Fundamentals of

Scatter Search and Path Relinking”, Control and Cybernetics

39(3), 2000, pp. 653-684.

[19] M. Harman, B.F. Jones, “Search-based software

engineering”, Information and Software Technology, 43(14),

2001, pp. 833-839.

[20] H. Huang, W-T Tsai, R. Paul and Y. Chen, “Automated

Model Checking and Testing for Composite Web Services”,

in: Proceedings of the Eighth IEEE International Symposium

on Object-Oriented Real-Time Distributed Computing,

Seattle (USA) 2005, pp 300-307.

[21] M. Laguna, R. Martí, Scatter Search: Methodology and

Implementations in C, Kluwer Academic Publishers, Boston,

MA, USA, 2002.

[22] Z. Li, M. Harman, R.M. Hierons, “Search algorithms for

regression test case prioritization”, IEEE Transactions on

Software Engineering, 33(4), 2007, pp. 225-237.

[23] N. Mansour, M. Salame, “Data generation for path

testing”, Software Quality Journal, 12, 2004, pp. 121-136.

[24] T. Mantere, J.T. Alander, “Evolutionary software

engineering, a review”, Applied Soft Computing, 5(3), 2005,

p. 315-331.

[25] R. Martí, “Scatter Search—Wellsprings and

Challenges”, European Journal of Operational Research,

169(2), 2006, pp. 351–358.

[26] P. McMinn, “Search-based software test data

generation: a survey”, Software Testing Verification and

Reliability, 14(2), 2004, pp. 105-156.

[27] P. McMinn, M. Holcombe, “Evolutionary testing using

an extended chaining approach”, Evolutionary Computation,

14(1), 2006, pp. 41.64.

[28] J. Miller, M. Reformat, H. Zhang, “Automatic test data

generation using genetic algorithm and program dependence

graphs”, Information and Software Technology, 48, 2006,

pp. 586-605.

[29] O. Moser, F. Rosenberg, S. Dustdar, “Non-Intrusive

Monitoring and Adaptation for WSBPEL”. In: Proceedings

of the 17th International World Wide Web Conference.

Beijing (2008), pp. 21-25.

[30] Organization for the Advancement of Structured

Information Standards (OASIS), Web Services Business

Process Execution Language (WSBPEL), URL:

http://www.oasis-open.org.

[31] R. Sagarna, J.A. Lozano, “Scatter Search in software

testing, comparison and collaboration with Estimation of

Distribution Algorithms”, European Journal of Operational

Research, 169(2), 2006, pp. 392-412.

[32] S.R. Vergilio, A. Pozo, “A grammar-guided genetic

programming framework configured for data mining and

software testing”, International Journal of Software

Engineering and Knowledge Engineering, 16(2), 2006, pp.

245-267.

[33] H. Waeselynck, P. Thévenod-Fosse, O. Abdellatif-

Kaddour, “Simulated annealing applied to test generation:

landscape characterization and stopping criteria”, Empirical

Software Engineering, 12(1), 2007, pp. 35-63.

[34] A. Watkins, E.M. Hufnagel, D. Berndt, L. Johnson,

“Using genetic algorithms and decision tree induction to

classify software failures”, International Journal of Software

Engineering and Knowledge Engineering, 16(2), 2006, pp.

269-291.

[35] J. Wegener, A. Baresel, H. Sthamer, “Evolutionary test

environment for automatic structural testing”, Information

and Software Technology, 43(14), 2001, pp. 841-854.

[36] M. Xiao, M. El-Attar, M. Reformat, J. Miller,

“Empirical evaluation of optimization algorithms when used

in goal-oriented automated test data generation techniques”,

Empirical Software Engineering, 12(2), 2007, pp. 183-239.

