
Testing the Reliability of Web Services Transactions in
Cooperative Applications

Rubén Casado, Javier Tuya
Department of Computing

University of Oviedo
Gijón, Spain

rcasado@lsi.uniovi.es, tuya@uniovi.es

Muhammad Younas
Computing and Communication Technologies

Oxford Brookes University
Oxford, United Kingdom

m.younas@brookes.ac.uk

ABSTRACT
Web services provide a distributed computing environment

wherein service providers and consumers can dynamically interact

and cooperate on various tasks in different domains such as e-

business, education, government and healthcare. Transaction

management technology is fundamental to building automated and

reliable web services applications. Various models and protocols

have been developed for web services transactions. However, they

give no attention to the key issue of testing the web services

transactions. We propose a novel abstract model for dynamically

modeling distinct web services transaction standards and test their

reliability in terms of failures. The proposed approach exploits

model-based testing techniques in order to automatically generate

test scenarios for web service transactions.

Categories and Subject Descriptors
D.2.2 [Design Tools and Techniques]: State diagrams

D.2.5 [Testing and Debugging]: Distributed, testing tools

Keywords
Transactions; web services; testing; cooperative applications

1. INTRODUCTION

Web services provide standard means of communication and

interoperation between software applications distributed across the

Web. The flexible and cooperative nature of web services allows

for composite web services that provide enhanced functionality

and cooperation among service providers and consumers. Consider

an example of a composite web service such as web travel agency

(WTA) application that composes different services (e.g., flight,

hotel, and car rental) in order to enable interaction and cooperation

among different service providers and consumers. Consumers can

use this as a one stop service for booking a flight, hotel and car.

While service providers (airline, hotels, and car company) can

integrate their services in order to cooperate on business deals as

well as offer cheaper and better services.

In order to ensure reliable interaction and cooperation between

web services it is crucial that their activities are modeled as

transactions such that they achieve a mutually agreed outcome. In

order to achieve such outcome various transaction models and

standards have been adapted for web services (WS) transactions

[1].

Though existing approaches investigate into testing of web service

integration, they fall short of testing web services transactions, for

instance, in terms of reliability and failures [2]. The process of

testing WS transactions is not trivial due to several reasons. First,

WS transactions are more complex compared to classical

transactions as they involve cooperation among multiple parties,

span autonomous and independent organizations, and may have

long duration. Thus WS transactions have more intricate sequence

of operations and execution environment. Second, WS transactions

do not have a homogeneous transaction model such as the ACID

(Atomicity, Consistency, Isolation, Durability) model. Instead they

are characterized by a diversity of transaction models such as BTP

[3], WS-BA [4], WS-TXM [5]. Such diversity of models also

complicates the process of testing WS transactions. Third, various

kinds of failures may happen during the processing of WS

transactions. In the above example, WTA application may suffer

from several failures: (i) technical failures such as communication,

system and software failures can occur. Such failures result in loss

of messages, processing of services, etc. (ii) service acquisition

failures may happen - if no flights are available, should the vehicle

and hotel reservations be canceled? (iii) what happens if there is a

problem with the payment process after the reservations were

made?

All the above failures affect the reliability of WS transactions.

Thus it is important to have an abstract (generic) model in order to

analyze different transaction models, generate test case

specifications and test their reliability in terms of failures. In this

paper we propose an abstract transaction model that serves as a

template for modeling and testing different WS transactions

standards. The contributions of the work presented in this paper are

summarized as follows:

• To analyse existing transaction models such as ACID models,

Advanced Transaction Models (ATM) [6] and WS transactions.

This paper gives a comparative evaluation of the existing

standards developed for WS transactions. The rationale behind

such analysis and evaluation is to identify the most widely used

WS transaction standards for which templates (instances) of the

abstract model can be automatically generated and tested in

terms of their reliability to failures.

• To provide a high level and generic template for dynamically

modeling existing WS transactions standards: The abstract

model identifies the different roles involved in WS transactions,

the relationship between them and models the behavior of each

one during the transaction life cycle. The sequence of messages

from the abstract model can be automatically translated to a

particular syntax of a WS transaction standard. The abstract

model provides a high level view of modeling WS transactions.
• To automatically generate test scenarios in order to test WS

transactions standards: The abstract transaction model

automatically generates specific test scenarios for various WS

transaction standards and their processing tasks. It adapts the

ACM COPYRIGHT NOTICE. Copyright © 2012 by the Association for Computing Machinery, Inc. Permission to make digital or
hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To
copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or permissions@acm.org. © ACM, 2012. This
is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in Proceedings of the 2012 ACM Symposium on Applied Computing (SAC 2012).

standard testing techniques of transition coverage for generating

test scenarios.
The rest of the paper is organized as follows. Section 2 gives an

analysis of WS transaction models and standards. Section 3

presents the proposed abstract transaction model. Section 4

illustrates the process of modeling WS transaction standards.

Section 5 presents model-based testing of WS transactions. Section

6 reviews existing work. Conclusions and future work are

presented in Section 7.

2. WS TRANSACTIONS STANDARDS
Conventional transaction models follow ACID properties that

maintain strict consistency and isolation of data sources [4]. Two

Phase Commit (2PC) protocol and its variants [6, 7] have

commonly been used for maintaining ACID properties in

distributed databases [5]. 2PC protocols implementing ACID

properties are vital for transactions (requiring strict data

consistency) but they are not suitable for long running applications

due to resource locking/blocking problems. Advanced transaction

models (ATMs) have been developed in order to address 2PC and

ACID related issues. These includes, nested transaction model [7],

SAGA model [8], open-nested [9], Split-join [10], Contracts [11],

Flex [12], and WebTram [13]. The underlying strategy of these

models is to allow compensation of partially completed

transactions in order to maintain data consistency and reliability.

For instance, if a seat cannot be booked in a flight then the

completed hotel reservation should be cancelled through a

compensating transaction.

Based on the above transaction models several standard

specifications have been developed for WS transactions. For

instance, Business Transaction Protocol (BTP) [3] adapts 2PC for

short lived transactions and nested transaction model for long-lived

transactions. Web Services Composite Application Framework

(WS-CAF) [5] is a set of WS specifications for applications

composed of multiple Web Services Transaction Management

(WS-TXM). WT-TXM defines three models, TXACID, TXLRA

and TXBP that address different scenarios. Web Service Atomic

Transactions (WS-AT) [14] and Web Service Business Activity

(WS-BA) [4] are built on top of Web Service Coordination (WS-

COOR) [15] and they follow its coordination mechanism. WS-AT

follows 2PC protocol while WS-BA uses the SAGA model.

The above standards are summarized and analysed in Table 1.

‘Coordination’ represents whether a particular standard provides

coordination facilities. ‘Short’ and ‘Long’ represent that the

underlying models are respectively based on ACID or advanced

transaction models. ‘Related’ represents the remaining standards

which belong to a same family. It is observed that all standards

separate the coordination and the management of the

subtransactions and also distinguish short-lived transactions from

long-lived transactions. It is also observed that these standards

have proprietary definitions of their underlying transaction models

despite the fact they are based on similar concepts. This makes it

difficult to use them in a uniform way. Our analysis shows that WS

standards are not homogenous and they need different processing

and testing requirements. Thus it is not practical (nor easier) to test

a single WS transaction model and evaluate its reliability. Instead

different WS transactions standards must be modeled and tested.

Table 1. WS transaction standards

Standards Coordination Short Long Related

BTP � 2PC Nested �
WS-CAF � � � WS-TXM

WS-TXM � � � TXACD, TXLRA, TXBP

TXACID � 2PC � WS-TXM

TXLRA � � SAGA WS-TXM

TXBP � � Open WS-TXM

WS-COOR � � � WS-AT, WS-BA

WS-AT � 2PC � WS-COOR

WS-BA � � SAGA WS-COOR

3. THE ABSTRACT TRANSACTION MODEL
The abstract model aims to model different WS transaction

standards as discussed above. It is designed using the well-known

UML statecharts notations which reflect the event-driven (message

communication) nature of WS transactions. It defines a WS

transaction, wT; a set of activities (or subtransactions) which are

executed in order to achieve an agreed outcome in a WS

application (as in the WTA example). Each wT has a set of

subtransactions, S={s1,… ,sn}. Each wT is associated with one

Coordinator while each subtransaction, si, is executed by an

Executor (as defined below). Each si could be a single level

subtransaction or it may have nested subtransactions, wT’. In the

proposed model, nested transactions are related in a parent:child

relationship. Fig. 1 shows such relationship, wherein wTp, is a

parent of s1, s2 and s3. s1 (or wTc) is in turn a parent of sc1 and sc2.

Subtransactions can have different types. A subtransaction is

lockable if the resources (or data) that it uses can be locked until

the completion of the parent transaction. A subtransaction is

compensatable if its effect can be semantically undone through a

compensating transaction. If a subtransaction is neither lockable

nor compensatable then it is said to be pivot. Any compensatable

subtransaction si has a compensation denoted by ci that undoes,

from a semantic point of view, the actions performed by si. A

subtransaction is retriable if it can be re-executed without causing

data inconsistency. A subtransaction is replaceable if there is an

alternative that can perform the same task. The outcome of wT is

called atomic if all its subtransactions are either successfully

completed or compensated. Alternatively, if subtransactions can

differ (some completed and some not), then the outcome is called

mixed.

Figure 1. WS transaction relationships

The execution of a wT involves different participants, each of

which plays a certain role. As shown in Fig. 2, we identify four

different roles of the participants involved in processing wT:

• Executor: a participant responsible for executing and terminating

a subtransaction.
• Coordinator: coordinates wT and manages failures and

compensations. It also collects the results from the participants in

order to maintain consistency of data after the execution of wT.
• Initiator: starts wT. First it requests the coordinator for a

transaction context. Then it asks others participants to participate

in wT.
• Terminator: decides when and how wT has to be terminated. It

also participates in the coordination tasks. Thus it can be a

subcoordinator.

The purpose of defining the above roles is to automatically model

the roles of participants in different WS transactions standards.

Figure 2. Participant roles

4. MODELING WS TRANSACTIONS STANDARDS

This section explains the process of how different WS standards

can be modeled using the abstract model. A prototype tool has

been developed that automatically performs the modeling as well

as testing of the most widely used WS transactions standards; BTP

and WS-BA (see [3, 4] for detailed specifications of BTP and WS-

BA). The prototype tool, developed in Java Eclipse, implements

the following three algorithms in order to perform the modeling of

WS transaction standards:

• Role identification and modeling: it identifies the roles of

participants in a target WS transaction standard and models it

using the roles defined in the abstract transaction model.

• State transitioning: it captures the important states of the target

WS transaction standard and maps them to the state transitions of

the abstract transaction model.

• Messages syntax: it maps the messages of abstract transaction

model to a specific WS transaction standard.

4.1 Business Transaction Protocol (BTP)
BTP allows coordinating multiple autonomous and cooperating

services to ensure that the overall application achieves a consistent

result (or agreed outcome). This consistency may be defined a

priori (all the work is confirmed or none); or it can be determined

according to the type of application (that may agree on partial

completion of work).

4.1.1 Roles identificaction and modelling
This algorithm models the roles of the BTP participants involved

in executing wT and its subtransactions (as defined in section 3).

BTP implements nested transaction model [7], wherein a parent

transaction, wT, is composed of subtransactions. BTP defines

Superior:Inferior relationship between the parent and

subtransactions. Fig. 3 depicts the modeling of BTP using the

abstract transaction model. Fig. 3 (a) represents the BTP

coordination of wT and its subtransactions using the

Superior:Inferior relationship, and (b) represents the coordination

of the same wT using the abstract transaction model. In BTP, the

superior makes the decision and the inferior abides such decision

in order to complete the transaction. In BTP, the Superior:Inferior

relationship can be recursively extended to define a transaction tree

having intermediates nodes as superior and inferior. The superior

(of BTP) is modeled as Initiator (of the abstract model). Also the

superior has to be modeled as Coordinator and Terminator as it

decides on the outcome of the subtransactions. Inferior (in BTP)

executes a subtransaction and is therefore modeled as Executor (in

the abstract model).

Figure 3. BTP modeling

4.1.2 State transitioning
Figures 4 and 5 show the states and transitions during the

processing of wT. The abstract model uses these to model the BTP

(as well as WS-BA) states and transitions. For instance, an Initiator

starts wT that causes the creation of a context for a new

transaction.

The coordinator replies the context and moves from INITIAL state

to ACTIVE state. Executor receives a context, enrolls with the

Coordinator and moves from READY to ACTIVE state. The

Executor moves to COMPLETED state after processing its

subtransaction. Coordinator moves to PREPARE state awaiting

decisions from Executors. The Executor sends its outcome to

Coordinator and moves to DECISION state. The Coordinator

collects the outcomes from all Executors and takes the final

decision. It moves from PREPARE state to DECISION state. The

final decision is sent to each Executor and then the Coordinator

moves to CONFIRM state. Executor sends acknowledgement and

changes its state to END state. Once the coordinator has received

all confirmation, it moves to END state. Note that an Executor can

leave the wT before confirming the subtransaction. So it can move

from ACTIVE state to CANCEL state.

Although BTP uses a 2PC protocol, Executors are not required to

lock data in the prepared state. This can produce a contradicted

decision as some Executors may take their own decisions that

could contradict with the Coordinator’s decision. When the

Coordinator detects a contradiction it notifies the concerned

Executor and moves to the END state. Further, BTP allows

replaceable subtransactions. Thus if an Executor is not able to start

or carry on with its subtransaction, it moves to FAILED state. A

new Executor is selected and the previous one moves to END state.

4.1.3 Messages syntax
Table 2 represents the mapping of some of the messages between

the abstract transaction model and the BTP. Though this table

shows fewer messages the abstract transaction model can capture

all the messages required to complete a BTP transaction.

Table 2. BTP message mapping

Abstract

model

BTP

Creation Initiator sends BEGIN to coordinator.

Execution

Initiator sends the context to executor and it sends

ENROL to coordinator. It responses with ENROLLED.
If the exeuctor is a superior of a new wT, it response

with CONTEXT_REPLY.

Local commited
Coordinator sends PREPARE to executor. Due a

protocol optimization, this transiction could be omitted.

Global commited Executor sends PREPARED / CANCEL.

Completed

sucesffully

Coordinator sends CONFIRM to executor and it

responses with CONFIRMED.

Completed
rollback

Coordinator sends CANCEL to executor and it
responses with CANCELLED.

Preparing
It receives CONFIRM_TRANSACTION from the

terminator and sends PREPARE to all executors.

Completed_rollba

ck

Coordinator wants confirm but there is a contradiction.

Coordinator sends CONTRADICTION to executor,
and/or executor sends HAZARD to coordinator.

Completed_pivot

Coordinator cancels but there is a contradiction.

Coordinator sends CONTRADICTION to executor,

and/or executor sends HAZARD to coordinator.

Processing failure
The executor is not working. Coordinator knows it
receiving a FAIL message or throw a non response

message.

4.2 Web Services Business Activity (WS-BA)

WS-BA manages activities (transactions) that apply compensations

to handle exceptions which occur during the execution of

activities. WS-BA works with WS-COOR coordination protocol.

WS-BA supports two coordination types, MixedOutcome, and

AtomicOutcome, and two protocol types. The protocols types differ

according to the participant’s role in processing subtransactions;

Executor (BusinessAgreementWithParticipantCompletion,

BAWPC) or Coordinator

(BusinessAgreementWithCoordinatorCompletion, BAWCC).

4.2.1 Roles identificaction

The role of Initiator is taken by the first participant who interacts

with the Coordinator. In MixedOutcome, the Coordinator is the

Terminator since each Executor may have its own decision. In

AtomicOutcome the role of Terminator is taken by all the

participants. This is due to the fact that if an Executor cancels its

subtransaction, the whole transaction has to be canceled. Also the

Coordinator acts as a Terminator since if all subtransactions have

successfully confirmed, it has to notify all the Executors about the

confirmation.

Figure 4. Executor states in the abstract model

Figure 5. Coordinator states in the abstract model

4.2.2 State transitioning

Similar to BTP the abstract transaction model uses the

state/transitions of Figures 4 and 5 to model WS-BA. The

Initiator requests a context and moves from START to FINISH.

The Coordinator responds with a context (from INITIAL to

ACTIVE state). The context is sent to Executors by the Initiator.

Each Executor joins the current wT and moves from READY to

ACTIVE state. After making a decision an Executor moves from

ACTIVE to COMPLETED state and the Coordinator moves from

ACTIVE to PREPARE state. When the transaction is mixed, the

decision for each subtransaction is taken alone. The Coordinator

moves from PREPARE to DECISION state when it receives an

Executor’s notification. The Coordinator decides about its

outcome and moves from DECISION to CONFIRM. The

Coordinator receives the confirmation and goes back to wait for

the rest of Executor’s notifications (from CONFIRM to ACTIVE

state). In the atomic type, the Coordinator moves from

PREPARE to DECISION state when it has a global outcome

about the transaction. The Coordinator then sends the global

decision and moves from DECISION to CONFRIM state.

Finally it waits for the confirmations and moves to END state.

When an Executor is not able to start executing its

subtransaction it moves from READY to ABORTED state. If the

subtransaction was cancelled while it was under execution, the

Executor moves from ACTIVE to CANCELLED state. In case of

failure it moves from ACTIVE to FAILED state.

4.2.3 Messages syntax

Table 3 presents the mapping of some of the messages between

the abstract transaction model and the WS-BA. As stated above,

the abstract transaction model can capture all the messages

required to complete a WS-BA transaction.

Table 3. WS-BA message mapping

Abstract model WS-BA

Creation

Initiator sends

CREATECOORDINATIONCONTEXT to
coordinator.

Execution

Each executor sends a REGISTER message to its

chosen coordinator. The coordinator responses

with a REGISTERRESPONSE message.

Local commited

If the coordination type is BAWCC, coordinator

sends COMPLETE to executor. In the other
coordination type this transition is omitted.

Global commited Executor sends COMPLETED to the coordinator.

Completed
sucesffully

Coordinator sends CLOSE to executor and it
responses with CLOSED.

Global veredict

It is an AtomicOutcome and the coordinator sends

CLOSE / COMPENSATE message for all

completed executors.

Partial veredict
The coordinator sends CLOSE / COMPENSATE
message to a specific executor.

Cancel Participant sends CANCEL to coordinator.

Processing failure Participant sends FAIL to coordinator.

Ended faultily Coordinator sends FAILED to executor.

5. MODEL-BASED TESTING

The main goal of testing is to detect failures and to ensure

reliability, i.e., to identify the observable differences between

the behaviors of implementation and what is expected on the

basis of the specifications of the WS transaction standards. We

exploit the model-based testing that encodes the intended

behavior of a system and the behavior of its environment.

Model-based testing approach is capable of generating suitable

test specifications. It has also been used in other WS

environments [16].

We describe the process of how the abstract transaction model

can be used to generate test scenarios for WS transactions. Since

our model is based on states/transitions, we use the well known

criterion of transition coverage [17]. The basic concepts used in

definition of test scenarios are as follows:

Test criterion: A rule or collection that impose requirements on

a set of test scenarios.

Transition coverage criterion: The set of scenarios that must

include tests which cause transitions between states.

Abstract test scenario: A sequence of states and transitions of a

participant using the abstract model. The notation is used

to denote that the participant pi changes its current state S to S’

executing the transition labeled, t. If the participant is the

Coordinator, it is denoted by Κ. We use to

denote a sequence of transitions.

Test scenario: A sequence of messages between participants

using a specific WS transaction standard. The notation i[m1]j

denotes that the participant pi sends a message m1 to participant

pj. We use i [m1]j – lwT[m2]o – … – v [mn]z to denote a sequence

of messages.

Our prototype tool automatically obtains a set of test scenarios.

It applies transition coverage criterion over the abstract model

and obtains a set of independent paths. Each path defines an

abstract test scenario. Thus the test scenarios reached using this

criterion is the minimum set of independent paths that cover all

states of a model. Table 4 illustrates an example of an abstract

scenario for an Executor. The tool has generated six abstract test

scenarios for each Executor and seven for each Coordinator. The

tool also generates the mapping from the abstract test scenario to

a specific test scenario (sequence of message using the syntax of

BTP or WS-BA).

Table 4. Abstract test scenario

Abstract

test

scenario

As a proof of concept, we have used the tool with the WTA

example. In this example there are four Executors (Flight,

Vehicle, Hotel and Payment), and one Coordinator (WTA), so

thirty three test scenarios were automatically generated. Table 5

presents a test scenario for both WS-BA and BTP that are

automatically generated using the abstract test scenario.

Table 5. Test scenario

WS-BA

test

scenario

Agency[CREATECOORDINATIONCONTEXT]K –
K[CREATECOORDINATIONCONTEXTRESPONSE]Agency-

Agency[CONTEXT]Hotel –
Hotel[REGISTER]K –
K[REGISTERRESPONSE]Hotel - K[COMPLETE]Hotel
- Hotel[COMPLETED]K – K[CLOSE]Hotel –
Hotel[CLOSED]K

BTP test

scenario

Agency[BEGIN]K – K[BEGUN]Agency –

Agency[CONTEXT]Hotel Hotel[ENROL]K -

K[ENROLLED]Hotel –Hotel[PREPARED]K –

K[CONFIRM]Hotel – Hotel[CONFIRMED]K

Based on the generated test scenarios we can test the failures

and reliability of a particular WS transaction standard. We test

the BTP and WS-BA transaction standards in terms of their

execution of a WS transaction using the WTA case study. As an

example, we test a situation where a coordinator does not send a

notification to finish the subtransaction, say, executed by Hotel.

The test scenario in Table 5 will pass using BTP as it does not

need this kind of notification. That is the execution of a

transaction under BTP will not result in failure. However, it will

result in failure using WS-BA (BAWCC) standard. This is

because WS-BA (BAWCC) needs a notification before sending

its result to the Coordinator. In WS-BA (BAWCC)

implementation, the Coordinator did not receive the

confirmation from the Executor (related to Hotel) and thus it

cancels the reservations despite that the booking can be made.

The purchase was not carried out due to a transaction failure and

it may result in loss of money. This shows that the abstract

model automatically generates test cases to test different WS

transactions standards and identify their reliability to failures.

6. RELATED WORKS

Current work mainly deals with business transaction modeling

from a design perspective. A theoretical approach is used in [18]

in order to specify, analyze and synthesize advanced transaction

models. Transactional patterns that combine workflow process

adequacy and the transactional processing reliability are

identified in [19]. [20] presents a high level UML-based

language to design transaction process with diverse transactional

semantics whilst a XML representation is proposed in [21].

Though there exist significant literature on WS transactions but

to the best of our knowledge, none of them addresses the testing

of WS transactions. In [22] a risk-based approach is used to

define general test specifications for compensable transactions.

Some others works are focused on verifying long-lived

transactions from a theoretical point of view.

In [23], authors have developed a model of communicating

hierarchical timed automata suitable to describe long-running

transactions. This approach allows the verification of properties

by model checking. The work in [24] uses a technique to

translate programs with compensations to tree automata in order

to verify compensating transactions. Also [25] proposes a formal

model to verify the requirement of relaxed atomicity with

temporal constraints whilst [26] use event calculus to validate

the transactional behavior of WS compositions.

7. CONCLUSIONS AND FUTURE WORK

This paper proposed a novel abstract transaction model which
models different WS transaction standards. It exploited the
model-based testing technique in order to automatically generate
test scenarios for testing the failures and reliability of the WS
transaction standards. A prototype tool is developed in order to
validate and evaluate the proposed abstract model using a web
services application of a travel agency. We showed that the
abstract model is capable of dynamically modeling different WS
transaction standards such as BTP and WA-BA. We also tested
the failure and reliability of these standards using the test
scenarios generated through the proposed model. Our future
work includes detailed testing of the WS transactions standards
and their performance evaluation.

8. REFERENCES

[1] M. Younas, K. Chao, C. Lo, Y. Li, "An Efficient Transaction

Commit Protocol for Composite Web Services," Int. Conf. on

Ad. Info. Networking and Applications, 2006.

[2] G. Canfora and M. Penta, "Service-Oriented Architectures

Testing: A Survey," ISSSE 2006-2008, Salerno, Italy, 2009

[3] OASIS, "Business Transaction Protocol," http://www.oasis-

open.org/committees/tchome.php?wg-abbrev=business-transaction.

[4] OASIS, "Web Services Business Activity," http://docs.oasis-

open.org/ws-tx/wsba/2006/06.

[5] OASIS, "Web Services Composite Application Framework"

http://www.oasis-open.org/committees/tc-home.php?wg-

abbrev=ws-caf.

[6] Database transaction models for advanced applications.

Morgan Kaufmann Publishers Inc., 1992, p. 610.

[7] E.B. Moss, "Nested Transactions: An Approach to Reliable

Distributed Computing," MIT, 1981.

[8] H. Garcia-Molina, K. Salem, "Sagas," SIGMOD 87, 1987.

[9] G. Weikum, H.-J. Schek, "Concepts and applications of

multilevel transactions and open nested transactions," Database

transaction models for advanced applications: 1992

[10] C. Pu, G. E. Kaiser and N. C. Hutchinson., "Split-

Transactions for Open-Ended Activities," VLDB, 1988.

[11] Reuter, "ConTracts: A Means for Extending Control

Beyond Transaction Boundaries," 3rd Int. Workshop on High

Performance Transaction Systems, 1989.

[12] A. Zhang, M. Nodine, B. Bhargava and O. Bukhres.,

"Ensuring relaxed atomicity for flexible transactions in

multidatabase systems," ACM SIGMOD Record, 1994.

[13] M. Younas, B. Eaglestone and R. Holton, "A formal

treatment of a SACRED Protocol for Multidatabase Web

Transactions," Database and Expert Systems Applications, vol.

1873, pp. 899-908, 2000.

[14] OASIS, "Web Services Atomic Transaction,"

http://docs.oasis-open.org/ws-tx/wsat/2006/06.

[15] OASIS, "Web Services Coordination,," http://docs.oasis-

open.org/ws-tx/wscoor/2006/06.

[16] A. Cavalli, T. Cao, W. Mallouli, E. Martins, E. Sadovykh,

S. Salva and F. Zaidi, "WebMov: A Dedicated Framework for

the Modelling and Testing of Web Services Composition," IEEE

ICWS 2010.

[17] J. Offutt, S. Liu, A. Abdurazik and P. Ammann.,

"Generating Test Data From State-based Specifications,"

Journal of Software Testing, Verification and Reliability, vol.

13, pp. 25-53, 2003.

[18] P. K. Chrysanthis and K. Ramamritham, "Synthesis of

extended transaction models using ACTA," ACM Trans.

Database Syst., vol. 19, pp. 450-491, 1994.

[19] S. Bhiri, C. Godart and O. Perrin, "Transactional patterns

for reliable web services compositions," Int. Conf. on Web

Engineering, California, USA, 2006.

[20] N. Gioldasis and S. Christodoulakis, "UTML: Unified

Transaction Modeling Language," Int. Conf. on Web

Information Systems Engineering 2002.

[21] P. Hrastnik and W. Winiwarter, "Using advanced

transaction meta-models for creating transaction-aware web

service environments," International Journal of Web

Information Systems, 2005.

[22] R. Casado, J. Tuya and M. Younas, "Testing Long-Lived

Web Services Transactions Using a Risk-Based Approach," Int.

Conf.on Quality Software, 2010.

[23] R. Lanotte, A. Maggiolo-Schettini, P. Milazzo and A.

Troina, "Design and verification of long-running transactions in

a timed framework," Science of Computer Programming, pp.

76-94, 2008.

[24] M. Emmi and R. Majumdar, "Verifying Compensating

Transactions," Int. Conf. on Verification, Model Checking, and

Abstract Interpretation, 2007.

[25] J. Li, H. Zh and J. He, "Specifying and Verifying Web

Transactions," Int. Conf.on Formal Techniques for Networked

and Distributed Systems, 2008.

[26] W. Gaaloul, M. Rouchaded, C. Godart and M. Hauswirth.,

"Verifying composite service transactional behavior using event

calculus," OTM On the move to meaningful internet systems,

Vilamoura, Portugal, 2007.

