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ABSTRACT 
Web services provide a distributed computing environment 

wherein service providers and consumers can dynamically interact 

and cooperate on various tasks in different domains such as e-

business, education, government and healthcare. Transaction 

management technology is fundamental to building automated and 

reliable web services applications. Various models and protocols 

have been developed for web services transactions. However, they 

give no attention to the key issue of testing the web services 

transactions. We propose a novel abstract model for dynamically 

modeling distinct web services transaction standards and test their 

reliability in terms of failures. The proposed approach exploits 

model-based testing techniques in order to automatically generate 

test scenarios for web service transactions. 

Categories and Subject Descriptors 
D.2.2 [Design Tools and Techniques]: State diagrams 

D.2.5 [Testing and Debugging]: Distributed, testing tools 

Keywords 
Transactions; web services; testing; cooperative applications 

1. INTRODUCTION 

Web services provide standard means of communication and 

interoperation between software applications distributed across the 

Web. The flexible and cooperative nature of web services allows 

for composite web services that provide enhanced functionality 

and cooperation among service providers and consumers. Consider 

an example of a composite web service such as web travel agency 

(WTA) application that composes different services (e.g., flight, 

hotel, and car rental) in order to enable interaction and cooperation 

among different service providers and consumers. Consumers can 

use this as a one stop service for booking a flight, hotel and car. 

While service providers (airline, hotels, and car company) can 

integrate their services in order to cooperate on business deals as 

well as offer cheaper and better services. 

In order to ensure reliable interaction and cooperation between 

web services it is crucial that their activities are modeled as 

transactions such that they achieve a mutually agreed outcome. In 

order to achieve such outcome various transaction models and 

standards have been adapted for web services (WS) transactions 

[1].  

Though existing approaches investigate into testing of web service 

integration, they fall short of testing web services transactions, for 

instance, in terms of reliability and failures [2]. The process of 

testing WS transactions is not trivial due to several reasons. First, 

WS transactions are more complex compared to classical 

transactions as they involve cooperation among multiple parties, 

span autonomous and independent organizations, and may have 

long duration. Thus WS transactions have more intricate sequence 

of operations and execution environment. Second, WS transactions 

do not have a homogeneous transaction model such as the ACID 

(Atomicity, Consistency, Isolation, Durability) model. Instead they 

are characterized by a diversity of transaction models such as BTP 

[3], WS-BA [4], WS-TXM [5]. Such diversity of models also 

complicates the process of testing WS transactions. Third, various 

kinds of failures may happen during the processing of WS 

transactions. In the above example, WTA application may suffer 

from several failures: (i) technical failures such as communication, 

system and software failures can occur. Such failures result in loss 

of messages, processing of services, etc. (ii) service acquisition 

failures may happen - if no flights are available, should the vehicle 

and hotel reservations be canceled? (iii) what happens if there is a 

problem with the payment process after the reservations were 

made? 

All the above failures affect the reliability of WS transactions. 

Thus it is important to have an abstract (generic) model in order to 

analyze different transaction models, generate test case 

specifications and test their reliability in terms of failures. In this 

paper we propose an abstract transaction model that serves as a 

template for modeling and testing different WS transactions 

standards. The contributions of the work presented in this paper are 

summarized as follows: 

• To analyse existing transaction models such as ACID models, 

Advanced Transaction Models (ATM) [6] and WS transactions. 

This paper gives a comparative evaluation of the existing 

standards developed for WS transactions. The rationale behind 

such analysis and evaluation is to identify the most widely used 

WS transaction standards for which templates (instances) of the 

abstract model can be automatically generated and tested in 

terms of their reliability to failures. 

• To provide a high level and generic template for dynamically 

modeling existing WS transactions standards: The abstract 

model identifies the different roles involved in WS transactions, 

the relationship between them and models the behavior of each 

one during the transaction life cycle. The sequence of messages 

from the abstract model can be automatically translated to a 

particular syntax of a WS transaction standard. The abstract 

model provides a high level view of modeling WS transactions.  
• To automatically generate test scenarios in order to test WS 

transactions standards: The abstract transaction model 

automatically generates specific test scenarios for various WS 

transaction standards and their processing tasks. It adapts the 
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standard testing techniques of transition coverage for generating 

test scenarios.  
The rest of the paper is organized as follows. Section 2 gives an 

analysis of WS transaction models and standards. Section 3 

presents the proposed abstract transaction model. Section 4 

illustrates the process of modeling WS transaction standards. 

Section 5 presents model-based testing of WS transactions. Section 

6 reviews existing work. Conclusions and future work are 

presented in Section 7. 

2. WS TRANSACTIONS STANDARDS 
Conventional transaction models follow ACID properties that 

maintain strict consistency and isolation of data sources [4]. Two 

Phase Commit (2PC) protocol and its variants [6, 7] have 

commonly been used for maintaining ACID properties in 

distributed databases [5]. 2PC protocols implementing ACID 

properties are vital for transactions (requiring strict data 

consistency) but they are not suitable for long running applications 

due to resource locking/blocking problems. Advanced transaction 

models (ATMs) have been developed in order to address 2PC and 

ACID related issues. These includes, nested transaction model [7], 

SAGA model [8], open-nested [9], Split-join [10], Contracts [11], 

Flex [12], and WebTram [13]. The underlying strategy of these 

models is to allow compensation of partially completed 

transactions in order to maintain data consistency and reliability. 

For instance, if a seat cannot be booked in a flight then the 

completed hotel reservation should be cancelled through a 

compensating transaction.  

Based on the above transaction models several standard 

specifications have been developed for WS transactions. For 

instance, Business Transaction Protocol (BTP) [3] adapts 2PC for 

short lived transactions and nested transaction model for long-lived 

transactions. Web Services Composite Application Framework 

(WS-CAF) [5] is a set of WS specifications for applications 

composed of multiple Web Services Transaction Management 

(WS-TXM). WT-TXM defines three models, TXACID, TXLRA 

and TXBP that address different scenarios. Web Service Atomic 

Transactions (WS-AT) [14] and Web Service Business Activity 

(WS-BA) [4] are built on top of Web Service Coordination (WS-

COOR) [15] and they follow its coordination mechanism. WS-AT 

follows 2PC protocol while WS-BA uses the SAGA model. 

The above standards are summarized and analysed in Table 1. 

‘Coordination’ represents whether a particular standard provides 

coordination facilities. ‘Short’ and ‘Long’ represent that the 

underlying models are respectively based on ACID or advanced 

transaction models. ‘Related’ represents the remaining standards 

which belong to a same family. It is observed that all standards 

separate the coordination and the management of the 

subtransactions and also distinguish short-lived transactions from 

long-lived transactions. It is also observed that these standards 

have proprietary definitions of their underlying transaction models 

despite the fact they are based on similar concepts. This makes it 

difficult to use them in a uniform way. Our analysis shows that WS 

standards are not homogenous and they need different processing 

and testing requirements. Thus it is not practical (nor easier) to test 

a single WS transaction model and evaluate its reliability. Instead 

different WS transactions standards must be modeled and tested.  

Table 1. WS transaction standards 

Standards Coordination Short Long Related 

BTP � 2PC Nested � 
WS-CAF � � � WS-TXM 

WS-TXM � � � TXACD, TXLRA, TXBP 

TXACID � 2PC � WS-TXM 

TXLRA � � SAGA WS-TXM 

TXBP � � Open WS-TXM 

WS-COOR � � � WS-AT, WS-BA 

WS-AT � 2PC � WS-COOR 

WS-BA � � SAGA WS-COOR 

3. THE ABSTRACT TRANSACTION MODEL 
The abstract model aims to model different WS transaction 

standards as discussed above. It is designed using the well-known 

UML statecharts notations which reflect the event-driven (message 

communication) nature of WS transactions. It defines a WS 

transaction, wT; a set of activities (or subtransactions) which are 

executed in order to achieve an agreed outcome in a WS 

application (as in the WTA example). Each wT has a set of 

subtransactions, S={s1,… ,sn}. Each wT is associated with one 

Coordinator while each subtransaction, si, is executed by an 

Executor (as defined below). Each si could be a single level 

subtransaction or it may have nested subtransactions, wT’. In the 

proposed model, nested transactions are related in a parent:child 

relationship. Fig. 1 shows such relationship, wherein wTp, is a 

parent of s1, s2 and s3. s1 (or wTc) is in turn a parent of sc1 and sc2. 

Subtransactions can have different types. A subtransaction is 

lockable if the resources (or data) that it uses can be locked until 

the completion of the parent transaction. A subtransaction is 

compensatable if its effect can be semantically undone through a 

compensating transaction. If a subtransaction is neither lockable 

nor compensatable then it is said to be pivot. Any compensatable 

subtransaction si has a compensation denoted by ci that undoes, 

from a semantic point of view, the actions performed by si. A 

subtransaction is retriable if it can be re-executed without causing 

data inconsistency. A subtransaction is replaceable if there is an 

alternative that can perform the same task. The outcome of wT is 

called atomic if all its subtransactions are either successfully 

completed or compensated. Alternatively, if subtransactions can 

differ (some completed and some not), then the outcome is called 

mixed. 

 

Figure 1. WS transaction relationships 

The execution of a wT involves different participants, each of 

which plays a certain role. As shown in Fig. 2, we identify four 

different roles of the participants involved in processing wT: 

• Executor: a participant responsible for executing and terminating 

a subtransaction. 
• Coordinator: coordinates wT and manages failures and 

compensations. It also collects the results from the participants in 

order to maintain consistency of data after the execution of wT. 
• Initiator: starts wT. First it requests the coordinator for a 

transaction context. Then it asks others participants to participate 

in wT. 
• Terminator: decides when and how wT has to be terminated. It 

also participates in the coordination tasks. Thus it can be a 

subcoordinator. 



The purpose of defining the above roles is to automatically model 

the roles of participants in different WS transactions standards.  

 

Figure 2. Participant roles 

4. MODELING WS TRANSACTIONS STANDARDS 

This section explains the process of how different WS standards 

can be modeled using the abstract model. A prototype tool has 

been developed that automatically performs the modeling as well 

as testing of the most widely used WS transactions standards; BTP 

and WS-BA (see [3, 4] for detailed specifications of BTP and WS-

BA). The prototype tool, developed in Java Eclipse, implements 

the following three algorithms in order to perform the modeling of 

WS transaction standards: 

• Role identification and modeling: it identifies the roles of 

participants in a target WS transaction standard and models it 

using the roles defined in the abstract transaction model. 

• State transitioning: it captures the important states of the target 

WS transaction standard and maps them to the state transitions of 

the abstract transaction model. 

• Messages syntax: it maps the messages of abstract transaction 

model to a specific WS transaction standard. 

4.1 Business Transaction Protocol (BTP) 
BTP allows coordinating multiple autonomous and cooperating 

services to ensure that the overall application achieves a consistent 

result (or agreed outcome). This consistency may be defined a 

priori (all the work is confirmed or none); or it can be determined 

according to the type of application (that may agree on partial 

completion of work). 

4.1.1 Roles identificaction and modelling 
This algorithm models the roles of the BTP participants involved 

in executing wT and its subtransactions (as defined in section 3). 

BTP implements nested transaction model [7], wherein a parent 

transaction, wT, is composed of subtransactions. BTP defines 

Superior:Inferior relationship between the parent and 

subtransactions. Fig. 3 depicts the modeling of BTP using the 

abstract transaction model. Fig. 3 (a) represents the BTP 

coordination of wT and its subtransactions using the 

Superior:Inferior relationship, and (b) represents the coordination 

of the same wT using the abstract transaction model. In BTP, the 

superior makes the decision and the inferior abides such decision 

in order to complete the transaction. In BTP, the Superior:Inferior 

relationship can be recursively extended to define a transaction tree 

having intermediates nodes as superior and inferior. The superior 

(of BTP) is modeled as Initiator (of the abstract model). Also the 

superior has to be modeled as Coordinator and Terminator as it 

decides on the outcome of the subtransactions. Inferior (in BTP) 

executes a subtransaction and is therefore modeled as Executor (in 

the abstract model). 

 

Figure 3. BTP modeling 

4.1.2 State transitioning 
Figures 4 and 5 show the states and transitions during the 

processing of wT. The abstract model uses these to model the BTP 

(as well as WS-BA) states and transitions. For instance, an Initiator 

starts wT that causes the creation of a context for a new 

transaction. 

The coordinator replies the context and moves from INITIAL state 

to ACTIVE state. Executor receives a context, enrolls with the 

Coordinator and moves from READY to ACTIVE state. The 

Executor moves to COMPLETED state after processing its 

subtransaction. Coordinator moves to PREPARE state awaiting 

decisions from Executors. The Executor sends its outcome to 

Coordinator and moves to DECISION state. The Coordinator 

collects the outcomes from all Executors and takes the final 

decision. It moves from PREPARE state to DECISION state. The 

final decision is sent to each Executor and then the Coordinator 

moves to CONFIRM state. Executor sends acknowledgement and 

changes its state to END state. Once the coordinator has received 

all confirmation, it moves to END state. Note that an Executor can 

leave the wT before confirming the subtransaction. So it can move 

from ACTIVE state to CANCEL state.  

Although BTP uses a 2PC protocol, Executors are not required to 

lock data in the prepared state. This can produce a contradicted 

decision as some Executors may take their own decisions that 

could contradict with the Coordinator’s decision. When the 

Coordinator detects a contradiction it notifies the concerned 

Executor and moves to the END state. Further, BTP allows 

replaceable subtransactions. Thus if an Executor is not able to start 

or carry on with its subtransaction, it moves to FAILED state. A 

new Executor is selected and the previous one moves to END state. 

4.1.3 Messages syntax 
Table 2 represents the mapping of some of the messages between 

the abstract transaction model and the BTP. Though this table 

shows fewer messages the abstract transaction model can capture 

all the messages required to complete a BTP transaction. 

Table 2. BTP message mapping 

Abstract 

model 

BTP 

Creation Initiator sends BEGIN to coordinator. 

Execution 

Initiator sends the context to executor and it sends 

ENROL to coordinator. It responses with ENROLLED. 
If the exeuctor is a superior of a new wT, it response 

with CONTEXT_REPLY. 

Local commited 
Coordinator sends PREPARE to executor. Due a 

protocol optimization, this transiction could be omitted. 

Global commited Executor sends PREPARED / CANCEL. 



Completed 

sucesffully 

Coordinator sends CONFIRM to executor and it 

responses with CONFIRMED. 

Completed 
rollback 

Coordinator sends CANCEL to executor and it 
responses with CANCELLED. 

Preparing 
It receives CONFIRM_TRANSACTION from the 

terminator and sends PREPARE to all executors. 

Completed_rollba

ck 

Coordinator wants confirm but there is a contradiction. 

Coordinator sends CONTRADICTION to executor, 
and/or executor sends HAZARD to coordinator. 

Completed_pivot 

Coordinator cancels but there is a contradiction. 

Coordinator sends CONTRADICTION to executor, 

and/or executor sends HAZARD to coordinator. 

Processing failure 
The executor is not working. Coordinator knows it 
receiving a FAIL message or throw a non response 

message. 

4.2 Web Services Business Activity (WS-BA) 

WS-BA manages activities (transactions) that apply compensations 

to handle exceptions which occur during the execution of 

activities. WS-BA works with WS-COOR coordination protocol. 

WS-BA supports two coordination types, MixedOutcome, and 

AtomicOutcome, and two protocol types. The protocols types differ 

according to the participant’s role in processing subtransactions; 

Executor (BusinessAgreementWithParticipantCompletion, 

BAWPC) or Coordinator 

(BusinessAgreementWithCoordinatorCompletion, BAWCC).  

4.2.1 Roles identificaction 

The role of Initiator is taken by the first participant who interacts 

with the Coordinator. In MixedOutcome, the Coordinator is the 

Terminator since each Executor may have its own decision. In 

AtomicOutcome the role of Terminator is taken by all the 

participants. This is due to the fact that if an Executor cancels its 

subtransaction, the whole transaction has to be canceled. Also the 

Coordinator acts as a Terminator since if all subtransactions have 

successfully confirmed, it has to notify all the Executors about the 

confirmation. 

 

Figure 4. Executor states in the abstract model 

 

Figure 5. Coordinator states in the abstract model 

4.2.2 State transitioning 

Similar to BTP the abstract transaction model uses the 

state/transitions of Figures 4 and 5 to model WS-BA. The 

Initiator requests a context and moves from START to FINISH. 

The Coordinator responds with a context (from INITIAL to 

ACTIVE state). The context is sent to Executors by the Initiator. 

Each Executor joins the current wT and moves from READY to 

ACTIVE state. After making a decision an Executor moves from 

ACTIVE to COMPLETED state and the Coordinator moves from 

ACTIVE to PREPARE state. When the transaction is mixed, the 

decision for each subtransaction is taken alone. The Coordinator 

moves from PREPARE to DECISION state when it receives an 

Executor’s notification. The Coordinator decides about its 

outcome and moves from DECISION to CONFIRM. The 

Coordinator receives the confirmation and goes back to wait for 

the rest of Executor’s notifications (from CONFIRM to ACTIVE 

state). In the atomic type, the Coordinator moves from 

PREPARE to DECISION state when it has a global outcome 

about the transaction. The Coordinator then sends the global 

decision and moves from DECISION to CONFRIM state. 



Finally it waits for the confirmations and moves to END state. 

When an Executor is not able to start executing its 

subtransaction it moves from READY to ABORTED state. If the 

subtransaction was cancelled while it was under execution, the 

Executor moves from ACTIVE to CANCELLED state. In case of 

failure it moves from ACTIVE to FAILED state. 

4.2.3 Messages syntax 

Table 3 presents the mapping of some of the messages between 

the abstract transaction model and the WS-BA. As stated above, 

the abstract transaction model can capture all the messages 

required to complete a WS-BA transaction. 

Table 3. WS-BA message mapping 

Abstract model WS-BA 

Creation 

Initiator sends 

CREATECOORDINATIONCONTEXT to 
coordinator. 

Execution 

Each executor sends a REGISTER message to its 

chosen coordinator. The coordinator responses 

with a REGISTERRESPONSE message. 

Local commited 

If the coordination type is BAWCC, coordinator 

sends COMPLETE to executor. In the other 
coordination type this transition is omitted. 

Global commited Executor sends COMPLETED to the coordinator. 

Completed 
sucesffully 

Coordinator sends CLOSE to executor and it 
responses with CLOSED. 

Global veredict 

It is an AtomicOutcome and the coordinator sends 

CLOSE / COMPENSATE message for all 

completed executors.  

Partial veredict 
The coordinator sends CLOSE / COMPENSATE 
message to a specific executor. 

Cancel Participant sends CANCEL to coordinator.  

Processing failure Participant sends FAIL to coordinator. 

Ended faultily Coordinator sends FAILED to executor. 

5. MODEL-BASED TESTING 

The main goal of testing is to detect failures and to ensure 

reliability, i.e., to identify the observable differences between 

the behaviors of implementation and what is expected on the 

basis of the specifications of the WS transaction standards. We 

exploit the model-based testing that encodes the intended 

behavior of a system and the behavior of its environment.  

Model-based testing approach is capable of generating suitable 

test specifications. It has also been used in other WS 

environments [16]. 

We describe the process of how the abstract transaction model 

can be used to generate test scenarios for WS transactions. Since 

our model is based on states/transitions, we use the well known 

criterion of transition coverage [17]. The basic concepts used in 

definition of test scenarios are as follows: 

Test criterion: A rule or collection that impose requirements on 

a set of test scenarios.  

Transition coverage criterion: The set of scenarios that must 

include tests which cause transitions between states. 

Abstract test scenario: A sequence of states and transitions of a 

participant using the abstract model. The notation is used 

to denote that the participant pi changes its current state S to S’ 

executing the transition labeled, t. If the participant is the 

Coordinator, it is denoted by Κ. We use  to 

denote a sequence of transitions. 

Test scenario: A sequence of messages between participants 

using a specific WS transaction standard. The notation i[m1]j 

denotes that the participant pi sends a message m1 to participant 

pj. We use i [m1]j – lwT[m2]o – … – v [mn]z  to denote a sequence 

of messages. 

Our prototype tool automatically obtains a set of test scenarios. 

It applies transition coverage criterion over the abstract model 

and obtains a set of independent paths. Each path defines an 

abstract test scenario. Thus the test scenarios reached using this 

criterion is the minimum set of independent paths that cover all 

states of a model. Table 4 illustrates an example of an abstract 

scenario for an Executor. The tool has generated six abstract test 

scenarios for each Executor and seven for each Coordinator. The 

tool also generates the mapping from the abstract test scenario to 

a specific test scenario (sequence of message using the syntax of 

BTP or WS-BA).  

Table 4. Abstract test scenario 

Abstract 

test 

scenario 

 

As a proof of concept, we have used the tool with the WTA 

example. In this example there are four Executors (Flight, 

Vehicle, Hotel and Payment), and one Coordinator (WTA), so 

thirty three test scenarios were automatically generated. Table 5 

presents a test scenario for both WS-BA and BTP that are 

automatically generated using the abstract test scenario. 

Table 5. Test scenario 

WS-BA 

test 

scenario 

Agency[CREATECOORDINATIONCONTEXT]K – 
K[CREATECOORDINATIONCONTEXTRESPONSE]Agency- 

Agency[CONTEXT]Hotel –  
Hotel[REGISTER]K – 
K[REGISTERRESPONSE]Hotel - K[COMPLETE]Hotel 
- Hotel[COMPLETED]K – K[CLOSE]Hotel – 
Hotel[CLOSED]K 

BTP test 

scenario 

Agency[BEGIN]K – K[BEGUN]Agency –

Agency[CONTEXT]Hotel Hotel[ENROL]K - 

K[ENROLLED]Hotel –Hotel[PREPARED]K – 

K[CONFIRM]Hotel – Hotel[CONFIRMED]K 

Based on the generated test scenarios we can test the failures 

and reliability of a particular WS transaction standard. We test 

the BTP and WS-BA transaction standards in terms of their 

execution of a WS transaction using the WTA case study. As an 

example, we test a situation where a coordinator does not send a 

notification to finish the subtransaction, say, executed by Hotel. 

The test scenario in Table 5 will pass using BTP as it does not 

need this kind of notification. That is the execution of a 

transaction under BTP will not result in failure. However, it will 

result in failure using WS-BA (BAWCC) standard. This is 

because WS-BA (BAWCC) needs a notification before sending 

its result to the Coordinator. In WS-BA (BAWCC) 

implementation, the Coordinator did not receive the 

confirmation from the Executor (related to Hotel) and thus it 

cancels the reservations despite that the booking can be made. 

The purchase was not carried out due to a transaction failure and 

it may result in loss of money. This shows that the abstract 



model automatically generates test cases to test different WS 

transactions standards and identify their reliability to failures. 

6. RELATED WORKS 

Current work mainly deals with business transaction modeling 

from a design perspective. A theoretical approach is used in [18] 

in order to specify, analyze and synthesize advanced transaction 

models. Transactional patterns that combine workflow process 

adequacy and the transactional processing reliability are 

identified in [19]. [20] presents a high level UML-based 

language to design transaction process with diverse transactional 

semantics whilst a XML representation is proposed in [21]. 

Though there exist significant literature on WS transactions but 

to the best of our knowledge, none of them addresses the testing 

of WS transactions. In [22] a risk-based approach is used to 

define general test specifications for compensable transactions. 

Some others works are focused on verifying long-lived 

transactions from a theoretical point of view. 

In [23], authors have developed a model of communicating 

hierarchical timed automata suitable to describe long-running 

transactions. This approach allows the verification of properties 

by model checking. The work in [24] uses a technique to 

translate programs with compensations to tree automata in order 

to verify compensating transactions. Also [25] proposes a formal 

model to verify the requirement of relaxed atomicity with 

temporal constraints whilst [26] use event calculus to validate 

the transactional behavior of WS compositions. 

7. CONCLUSIONS AND FUTURE WORK 

This paper proposed a novel abstract transaction model which 
models different WS transaction standards. It exploited the 
model-based testing technique in order to automatically generate 
test scenarios for testing the failures and reliability of the WS 
transaction standards. A prototype tool is developed in order to 
validate and evaluate the proposed abstract model using a web 
services application of a travel agency. We showed that the 
abstract model is capable of dynamically modeling different WS 
transaction standards such as BTP and WA-BA. We also tested 
the failure and reliability of these standards using the test 
scenarios generated through the proposed model. Our future 
work includes detailed testing of the WS transactions standards 
and their performance evaluation. 
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