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Abstract—Transactions are crucial to ensuring the quality (such 

as recovery and reliability) of web services applications by 

constraining them to a mutually agreed outcome. This paper 

addresses the issue of testing the long-lived web services 

transactions which has been given little attention by the current 

research. It proposes a risk-based approach and also defines a set 

of properties for web services transactions. The proposed 

approach identifies for each property a set of potential situations 

that must be tested. We present an analysis for the Recovery 

property using a Fault Tree diagram where the leaf nodes 

represent potentially dangerous scenarios that must be checked. 

Finally we show with a case study how this Fault Tree can be 

used to derive test cases for web services transactions.  

Long-lived transactions; web service testing; risk-based testing 

I.  INTRODUCTION 

Web Services (WS) provide a paradigm for developing 
Internet-based applications using standard technologies and 
protocols and enable standard means of communication and 
collaboration between web applications running on a variety of 
platforms. Web services transactions are used to build reliable 
web-based applications. The fundamental principle of WS 
transactions is to ensure that all the component WS achieve a 
mutually agreed outcome. Transactions have been traditionally 
based on the ACID model which enforces strict isolation and 
atomicity properties and the locking of resources. WS 
transactions are generally complex and of long duration as they 
involve multiple parties and span many organizations. Thus 
ACID model does not fit well to the nature of WS transactions. 
In order to deal with such transactions, various extended 
transaction models have been adapted for WS. These models 
mainly relax the atomicity and isolation policy of ACID 
properties [1]. 

In order to manage long-lived WS transactions several 

standard specifications have been proposed [2,3,4], including 

Web Service Coordination (WS-COOR) [5], Web Service 

Atomic Transactions (WS-AT) [6] and Web Service Business 

Activity (WS-BA) [7]. However, there are no practical works 

on testing WS transactions [8]. Further, [9], [10], and [11] 

develop approaches for testing long-lived transactions but 

these works are focused on theoretically verifying the 

transactions properties.  
This paper addresses the issue of testing the WS 

transactions. The objective is to define criteria for testing the 
transactions that comply with WS-COOR and WS-BA 
standards as these are the most recent and widely accepted 

standards. Our approach applies a risk analysis method to a set 
of properties such as Composition, Sorting, Visibility, 
Consistency, Durability, Controllability, and Recovery in order 
to find possible failures during the WS transaction life-cycle. 
Contributions of this paper include (i) specification of notation 
for testing the behavior of long-lived WS transactions (ii) 
definition of a set of system properties (iii) a method for 
deriving test case specifications using a risk analysis of the 
recovery property, and (iv) practical case study which 
illustrates the proposed approach. 

II. BACKGROUND 

A. WS Transactions standards 

WS-COOR standard defines protocols for distributing the 
coordination context of a transaction among participants. It 
specifies an interface of a transaction manager (or coordinator) 
for creating a new or joining an existing transaction [5]. Both 
WS-AT and WS-BA [6, 7] are built on top of WS-COOR. WS-
BA coordinates long-running compensation-based activities 
that may consist of several atomic transactions.  

Fig. 1 depicts the main states during the life cycle of a 
participant using WS-BA and the messages exchanged between 
the participant and the coordinator. WS-AT is used to 
coordinate ACID-based transactions.  

B. Transaction characteristics 

Based on the existing works [12] that address the new 
features of this kind of transactions, we have identified the 
important characteristics that should be tested.  

A long-lived transaction is composed of subtransactions 
[13] that have autonomy to commit or abort unilaterally. So the 
atomicity is relaxed and isolation is violated because the results 
of the committed subtransactions are visible to other 
transactions. This new concept of atomicity (called semantic 
atomicity [14]) means that if any of the subtransactions is 
aborted then the effects of the committed transactions must be 
compensated [15]. 

 
 
Hence the system must be able to recover [16] its previous 

state maintaining the consistency [17]. Both the subtransactions 
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Figure 1. Ws-BusinessActivity abstract state diagram 
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and compensations must be executed in the correct order [18] 
and to manage these operations a coordinator is required [19]. 
As in the ACID model, the durability of the results of a 
completed long-lived transaction is a desired property [20]. 

III. CONCEPTUAL FRAMEWORK  

In [21], we presented the hierarchical conceptual 
framework in order to test long-lived WS transactions. The 
input or level zero is the analysis of the transactions 
characteristics. First level defines the system properties as  
described in Section II.B. At the next level a risk analysis is 
applied for each property in order to identify potential failures 
and their possible causes. This analysis is carried out taking 
into account the WS transaction standards behavior. The third 
level states a set of test case specifications which are identified 
through previous risk analysis. The last level specifies the 
execution of the proposed tests. Our work in this paper 
concerns the system properties, risk analysis and the 
specification of test cases. 

A. Definitions and Notations 

1) A long-lived Web Service Transaction (wT) comprises 

a group of subtransactions that execute different web services 

(participants). A wT is defined by wT=<S, C, ΨI, ΨE, ΨC > 

where S is a set of subtransactions, C is a set of compensatory 

actions, ΨI is a set of states that define the requirements so that 

each subtransaction can be executed (initial states), ΨE is a set 

of states that define the requirements after each subtransaction 

is completed (executed states) and ΨC is a set of states that 

define the requirements after each subtransaction is 

compensated (compensated states). 
The set S={s1, …, sn} defines the subtransactions where 

each si is an atomic transaction or another wT’.  

Any subtransaction si has a compensatory action denoted 

by ci. A ci undoes, from a semantic point of view, the actions 

performed by si, but does not necessarily return the transaction 

to the state that existed when the execution of si began. The set 

of all compensatory actions is denoted by C={c1, …, cn}. Any 

ci could be executed only if si has been completed. Any ci may 

be an empty action, denoted by �. 

2) Participants and coordinator 

A participant pi is the agent responsible for executing the 

subtransaction si and its compensatory action ci. A transaction 

notification is the communication between two participants of 

wT. The notation iwT[m1]jwT is used to denote that the 

participant pi intervenes in the transaction wT and sends the 

message m1 to another participant pj which is also part of the 

transaction wT. If the participant is the coordinator, it is 

denoted by Κ. We use iwT[m1]jwT – lwT[m2]owT – … – 

vwT[mn]zwT  to denote a sequence of transaction notifications.  

A Coordinator Κ is the participant that manages the 

subtransactions of a wT. It executes different subtransactions, 

manages failures and compensations, and collects the results 

from the participants in order to provide system with a 

consistent state after the execution of a transaction. 

3) Phases of a subtransaction 
The Initial state σi is the necessary requirement so that the 

participant pi can execute si. The set of all initial states is 

denoted by ΨI={σ1, …, σn}.  

The Executed state σ
*

i defines the requirement that the 

participant pi has to satisfy once the si execution has correctly 

finished. The set of all executed states is denoted by ΨE={σ
*
1, 

…, σ
*

n}. The requirements specified in an executed state σ
*

i 

may be included in the necessary requirements to execute the 

next subtransaction si+1, specified in the initial state σi+1.  

The Compensated state σ'i defines the requirements that 

the participant pi has to satisfy once the ci execution has 

correctly finished. The set of all compensated states is denoted 
by ΨC={σ '1, …, σ'n}.  

The Compensatory action ci undoes, from a semantic point 

of view, the actions carried out by si. The system changes to 

σ'i. This state is not necessarily equal to σi due to the 

impossibility of undoing some operations (e.g. a sent email).  

We use  to denote that, starting from the initial 
state σi, the executed state σ

*
i is reached after the 

subtransaction si is completed and the next subtransaction(s) 

can be executed. In the same way, we use  to denote 

that, stating from the executed state σ
*

i, the compensated state 

σ'i is reached after the compensatory action ci is completed and 

the next compensatory action(s) can be executed. Fig. 2 

depicts these notations. 

B. First Level: System Properties 

In Table I, we define properties that are shared and 

applicable to all long-lived transaction-based WS applications. 

If any of these properties are infringed a failure could appear.  

IV. RISK ANALYSIS FOR THE RECOVERY PROPERTY 

A risk is defined as an undesirable event that, if it occurs, 

represents a threat to the correct behavior of a process [22]. 

Risk analysis is a set of techniques used to investigate 

problems created by uncertainty and to assess their effects. 

Originally it was used in areas such as the nuclear, chemical 

and space industries. Nowadays it is used in software 

development where safety is also very important [22]. 

In this section the Fault Tree Analysis [23] notation will be 

used to hierarchically organize the identified risks. In this 

technique there is a top event (the root node) that represents 

the general problem. This top event will be discomposed in the 

next levels generating a tree of potential causes. These causes 

are connected through logic gates. The leaf nodes represent 

specific causes that must be controlled. A circle is used to 

denote leaf nodes and a rectangle is used to denote 

intermediate nodes. A triangle represents a subtree in order to 

generate images which are easier to understand. 

In our approach each system property will be a top event, 

therefore each one will generate a fault tree. The leaf nodes 

specify the potential problems that are necessary to test in 

order to avoid a wrong behavior of a wT. In this paper we 

present some details of the recovery property risk analysis. 

When we reach a leaf node in a branch it is used to generate a 

test case. It is illustrated with an example in Section V.B.  

Fig. 3 depicts a small part of the fault tree for the Recovery 

(1) property in order to model the risks of the WS transaction 

compensatory mechanism, which includes: the compensatory 

action is not executed at all (2) or incorrectly executed (3) or it 
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fails due to the loss of messages between the participants and 

the coordinator (4). This could be due to problems with 

 

participant messages (5) or coordinator messages (6). The 

problems related to participant are that it does not receive the 

compensation message (7), it receives the message when it 

should not receive this message (8) or the compensate 

message has finished with timeout (9). When a participant has 

problems receiving compensate messages from the 

coordinator, it may receive the message in an unsuitable state 

and wrongly execute the compensatory action. It means that 

the participant receives the message without executing its 

subtransaction (10), the participant receives a compensate 

message when it has finished its participation in the 

transaction (11), it receives the compensate message when it 

has already executed its compensatory action (12) or it 

receives the compensate message when it does not need to 

execute any compensatory action (13).  
One of the possible situations identified in (10) is that a 

participant was in a failing state (14). This situation means that  
a participant I was registered in a transaction wT and then, 
while it was executing its subtransaction, the participant 
reaches the failing state because a failure happened. One 
possible situation in (11) is that a compensate message is 
received when the participant has executed its subtransaction 
and it was not necessary to execute the compensatory action, 
therefore the participant is in the ended state (15).  

Based on the situations identified in the leaf nodes, we can 
define a test scenario for each one specifying the transaction 
notifications to reach this situation. For example, the sequence 
I [register]K - K[complete]I – I[fail]K – K[compensate]I 
represents the test scenario for the situation specified in (14). 
Test case for this scenario is shown in Section V.B.  

Please note that only one branch of the large fault tree has 
been presented. In the current version the whole fault tree 
consists of 26 leaf nodes that represent potentially dangerous 
situations that should be checked. 

V. THE TRAVEL AGENCY EXAMPLE 

This section presents the advantages of proposed approach 
using a travel Agency example in which customers are offered 

TABLE I.  SYSTEM PROPERTIES 

Composition  
A wT is composed of subtransactions. That is,  

S={s1, …, sn} S ෛ wT  

Sorting  
This shows that subtransactions can be executed in 
parallel or serially by satisfying the wT specification. The 

notation used is O(S)={si [;|] …[;|]sn}  

Visibility  
A wT allows other (sub)transactions to see the partial 

results of its subtransactions.  

Durability  
When the transaction is finished successfully the results 
will remain permanent in the system  

Consistency  
Subtransactions or their compensating transactions must 
maintain the required consistency of web services  

Recovery  

A subtransaction can be undone executing its 
compensatory action. ci. It moves the system from the 

state to the previous state σi. So any wT can be undone 
reaching an initial equivalent state if all executed 
subtransactions are compensated.  

Controllability  
This requires that the coordinator has to ensure the 
Composition, Consistency, Durability and Recovery 

properties of the transactions.  

 
Figure 3. Recovery Fault Tree 

with the facilities for making travel arrangements as follows. 
The Agency service receives an itinerary from a customer. 
After checking the itinerary for errors, the process determines 
which reservations to make, sending simultaneous requests to 
the appropriate airline, hotel and car rental agencies. If any of 
the reservation tasks fails, the itinerary is canceled by 
performing the compensatory action and the customer is 
notified of the problem. Agency service waits for confirmation 
of the three reservation requests. Upon receipt of confirmation, 
the Agency service notifies the customer and sends the 
reservation confirmation and final itinerary details and makes 
the payment. 

A. Transaction Specification 

wTagency is defined below using the notation specified in 

Section III.A. Due to space limitation, we just show the 

necessary requirements to illustrate the test case derived from 

leaf node (14) (Fig. 3). 

1) Definition 
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2) Subtransactions 

sitinerary= To check the dates, places and customer information. It decides 

the appropriate airline, hotel and car rental agencies to make the reservations.  
sairline= To make the flight reservation using the itinerary information. 

shotel= To make the hotel reservation using the itinerary information. 

3) Compensatory actions 

citinerary= � 

chotel= To cancel the hotel reservation. 

4) Initial states 

σhotel= The hotel service has received the dates and destination of the travel. 

5) Executed states 

σ*
hotel= The room is booked in the hotel system according to the itinerary. 

6) Compensated states 

σ’itinerary= σ
*

itinerary  

(7) Not received (8) Unsuitable state 

(5) Participant 

(4) Messages (2) Not executed (3) Incorrectly 

(1) Recovery 

(6) Coordinator 

(9) TimeOut 

(11) Finish (12) Compensated (13) MixedOutcome (10) Not complete 

(14) Failing (15) Ended 



 

σ'hotel= The room cancellation is registered in the hotel system. If the 

cancellation was executed by the agency two days before the first reservation 
day, or the cancellation was executed by the hotel company, the agency has 

received the amount paid. If the cancellation was carried out by the agency 

one day before the first reservation day, the agency has received 50% of the 
amount paid. 

B. Test Cases Using the Recovery Fault Tree 

In this section a specific test is defined for the scenario 

shown in the fault tree (leaf node (14), Fig. 3). The failure 

scenario refers to a participant that received a compensate 

message when it is in a failing state. This means that a 

problem has occurred while the participant was executing its 

subtransaction so that all its functionality could not have been 

completed. Therefore if it receives a compensate message and 

executes its compensatory action a failure will occur because 

some features of the subtransaction will be undone when they 

had not been carried out. In the Agency example there are four 

participants involved in the transaction so this scenario must 

be checked for each participant. An example of test case 

definition for the Hotel participant following the previous 

scenario is defined is shown in Table II. 

If the implementation accepts the compensation message, a 

failure appears. In this example the consequence would be the 

loss of money for the Hotel company. Assume that the Hotel 

had a problem while it was making the reservation so it did not 

execute the charge. But if it receives the compensate message 

and executes its compensatory action the Hotel will return to 

the customer the money that he/she had supposedly paid. 

VI. CONCLUSIONS AND FUTURE WORK 

We presented a new approach to test long-lived 

transactions in WS environments. Risk-based techniques are 

applied in order to identify failures. In this paper, we have 

shown the preliminary results including specific notations and 

a set of system properties. We have also developed a risk 

analysis of one of these properties, Recovery, using a Fault 

Tree diagram. We have shown how to use our approach in 

order to generate test cases specifications with an example.  

Our future work is to validate the test cases in a real 

implementation. 
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TABLE II.  TEST CASE USING THE FAULT TREE ANALYSIS 

Preconditions  wTagency is correctly initialized.  

Input 

sequence  

Hotelagency [register]K  

K[complete]Hotelagency  

Hotelagency[fail]K  

K[compensate]Hotelagency  

Expected Hotel ignores the compensate message so does not 

output  execute chotel. Thus the system remains in σhotel so σ
*
hotel 

is not met. Hotel still waits for the failed message.  
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