

Testing Long-lived Web Services Transactions Using a Risk-based Approach

Ruben Casado, Javier Tuya

University of Oviedo

Spain

rcasado@lsi.unovi.es, tuya@uniovi.es

Muhammad Younas

Oxford Brookes University

Oxford, UK

m.younas@brookes.ac.uk

Abstract—Transactions are crucial to ensuring the quality (such

as recovery and reliability) of web services applications by

constraining them to a mutually agreed outcome. This paper

addresses the issue of testing the long-lived web services

transactions which has been given little attention by the current

research. It proposes a risk-based approach and also defines a set

of properties for web services transactions. The proposed

approach identifies for each property a set of potential situations

that must be tested. We present an analysis for the Recovery

property using a Fault Tree diagram where the leaf nodes

represent potentially dangerous scenarios that must be checked.

Finally we show with a case study how this Fault Tree can be

used to derive test cases for web services transactions.

Long-lived transactions; web service testing; risk-based testing

I. INTRODUCTION

Web Services (WS) provide a paradigm for developing
Internet-based applications using standard technologies and
protocols and enable standard means of communication and
collaboration between web applications running on a variety of
platforms. Web services transactions are used to build reliable
web-based applications. The fundamental principle of WS
transactions is to ensure that all the component WS achieve a
mutually agreed outcome. Transactions have been traditionally
based on the ACID model which enforces strict isolation and
atomicity properties and the locking of resources. WS
transactions are generally complex and of long duration as they
involve multiple parties and span many organizations. Thus
ACID model does not fit well to the nature of WS transactions.
In order to deal with such transactions, various extended
transaction models have been adapted for WS. These models
mainly relax the atomicity and isolation policy of ACID
properties [1].

In order to manage long-lived WS transactions several

standard specifications have been proposed [2,3,4], including

Web Service Coordination (WS-COOR) [5], Web Service

Atomic Transactions (WS-AT) [6] and Web Service Business

Activity (WS-BA) [7]. However, there are no practical works

on testing WS transactions [8]. Further, [9], [10], and [11]

develop approaches for testing long-lived transactions but

these works are focused on theoretically verifying the

transactions properties.
This paper addresses the issue of testing the WS

transactions. The objective is to define criteria for testing the
transactions that comply with WS-COOR and WS-BA
standards as these are the most recent and widely accepted

standards. Our approach applies a risk analysis method to a set
of properties such as Composition, Sorting, Visibility,
Consistency, Durability, Controllability, and Recovery in order
to find possible failures during the WS transaction life-cycle.
Contributions of this paper include (i) specification of notation
for testing the behavior of long-lived WS transactions (ii)
definition of a set of system properties (iii) a method for
deriving test case specifications using a risk analysis of the
recovery property, and (iv) practical case study which
illustrates the proposed approach.

II. BACKGROUND

A. WS Transactions standards

WS-COOR standard defines protocols for distributing the
coordination context of a transaction among participants. It
specifies an interface of a transaction manager (or coordinator)
for creating a new or joining an existing transaction [5]. Both
WS-AT and WS-BA [6, 7] are built on top of WS-COOR. WS-
BA coordinates long-running compensation-based activities
that may consist of several atomic transactions.

Fig. 1 depicts the main states during the life cycle of a
participant using WS-BA and the messages exchanged between
the participant and the coordinator. WS-AT is used to
coordinate ACID-based transactions.

B. Transaction characteristics

Based on the existing works [12] that address the new
features of this kind of transactions, we have identified the
important characteristics that should be tested.

A long-lived transaction is composed of subtransactions
[13] that have autonomy to commit or abort unilaterally. So the
atomicity is relaxed and isolation is violated because the results
of the committed subtransactions are visible to other
transactions. This new concept of atomicity (called semantic
atomicity [14]) means that if any of the subtransactions is
aborted then the effects of the committed transactions must be
compensated [15].

Hence the system must be able to recover [16] its previous

state maintaining the consistency [17]. Both the subtransactions

Fail Fail Failed

Compensated Compensate

Closed Complete
Active Completed Ended

Compensating

Failing

Figure 1. Ws-BusinessActivity abstract state diagram

© 2010 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works. Original publication: Proceedings of the 10th International Conference on Quality Software
(QSIC 2010), DOI 10.1109/QSIC.2010.46

and compensations must be executed in the correct order [18]
and to manage these operations a coordinator is required [19].
As in the ACID model, the durability of the results of a
completed long-lived transaction is a desired property [20].

III. CONCEPTUAL FRAMEWORK

In [21], we presented the hierarchical conceptual
framework in order to test long-lived WS transactions. The
input or level zero is the analysis of the transactions
characteristics. First level defines the system properties as
described in Section II.B. At the next level a risk analysis is
applied for each property in order to identify potential failures
and their possible causes. This analysis is carried out taking
into account the WS transaction standards behavior. The third
level states a set of test case specifications which are identified
through previous risk analysis. The last level specifies the
execution of the proposed tests. Our work in this paper
concerns the system properties, risk analysis and the
specification of test cases.

A. Definitions and Notations

1) A long-lived Web Service Transaction (wT) comprises

a group of subtransactions that execute different web services

(participants). A wT is defined by wT=<S, C, ΨI, ΨE, ΨC >

where S is a set of subtransactions, C is a set of compensatory

actions, ΨI is a set of states that define the requirements so that

each subtransaction can be executed (initial states), ΨE is a set

of states that define the requirements after each subtransaction

is completed (executed states) and ΨC is a set of states that

define the requirements after each subtransaction is

compensated (compensated states).
The set S={s1, …, sn} defines the subtransactions where

each si is an atomic transaction or another wT’.

Any subtransaction si has a compensatory action denoted

by ci. A ci undoes, from a semantic point of view, the actions

performed by si, but does not necessarily return the transaction

to the state that existed when the execution of si began. The set

of all compensatory actions is denoted by C={c1, …, cn}. Any

ci could be executed only if si has been completed. Any ci may

be an empty action, denoted by �.

2) Participants and coordinator

A participant pi is the agent responsible for executing the

subtransaction si and its compensatory action ci. A transaction

notification is the communication between two participants of

wT. The notation iwT[m1]jwT is used to denote that the

participant pi intervenes in the transaction wT and sends the

message m1 to another participant pj which is also part of the

transaction wT. If the participant is the coordinator, it is

denoted by Κ. We use iwT[m1]jwT – lwT[m2]owT – … –

vwT[mn]zwT to denote a sequence of transaction notifications.

A Coordinator Κ is the participant that manages the

subtransactions of a wT. It executes different subtransactions,

manages failures and compensations, and collects the results

from the participants in order to provide system with a

consistent state after the execution of a transaction.

3) Phases of a subtransaction
The Initial state σi is the necessary requirement so that the

participant pi can execute si. The set of all initial states is

denoted by ΨI={σ1, …, σn}.

The Executed state σ
*

i defines the requirement that the

participant pi has to satisfy once the si execution has correctly

finished. The set of all executed states is denoted by ΨE={σ
*
1,

…, σ
*

n}. The requirements specified in an executed state σ
*

i

may be included in the necessary requirements to execute the

next subtransaction si+1, specified in the initial state σi+1.

The Compensated state σ'i defines the requirements that

the participant pi has to satisfy once the ci execution has

correctly finished. The set of all compensated states is denoted
by ΨC={σ '1, …, σ'n}.

The Compensatory action ci undoes, from a semantic point

of view, the actions carried out by si. The system changes to

σ'i. This state is not necessarily equal to σi due to the

impossibility of undoing some operations (e.g. a sent email).

We use to denote that, starting from the initial
state σi, the executed state σ

*
i is reached after the

subtransaction si is completed and the next subtransaction(s)

can be executed. In the same way, we use to denote

that, stating from the executed state σ
*

i, the compensated state

σ'i is reached after the compensatory action ci is completed and

the next compensatory action(s) can be executed. Fig. 2

depicts these notations.

B. First Level: System Properties

In Table I, we define properties that are shared and

applicable to all long-lived transaction-based WS applications.

If any of these properties are infringed a failure could appear.

IV. RISK ANALYSIS FOR THE RECOVERY PROPERTY

A risk is defined as an undesirable event that, if it occurs,

represents a threat to the correct behavior of a process [22].

Risk analysis is a set of techniques used to investigate

problems created by uncertainty and to assess their effects.

Originally it was used in areas such as the nuclear, chemical

and space industries. Nowadays it is used in software

development where safety is also very important [22].

In this section the Fault Tree Analysis [23] notation will be

used to hierarchically organize the identified risks. In this

technique there is a top event (the root node) that represents

the general problem. This top event will be discomposed in the

next levels generating a tree of potential causes. These causes

are connected through logic gates. The leaf nodes represent

specific causes that must be controlled. A circle is used to

denote leaf nodes and a rectangle is used to denote

intermediate nodes. A triangle represents a subtree in order to

generate images which are easier to understand.

In our approach each system property will be a top event,

therefore each one will generate a fault tree. The leaf nodes

specify the potential problems that are necessary to test in

order to avoid a wrong behavior of a wT. In this paper we

present some details of the recovery property risk analysis.

When we reach a leaf node in a branch it is used to generate a

test case. It is illustrated with an example in Section V.B.

Fig. 3 depicts a small part of the fault tree for the Recovery

(1) property in order to model the risks of the WS transaction

compensatory mechanism, which includes: the compensatory

action is not executed at all (2) or incorrectly executed (3) or it

Compensate / ci

Registration / Complete / si σi σi
*

σ’i

Closed /

Compensated /

fails due to the loss of messages between the participants and

the coordinator (4). This could be due to problems with

participant messages (5) or coordinator messages (6). The

problems related to participant are that it does not receive the

compensation message (7), it receives the message when it

should not receive this message (8) or the compensate

message has finished with timeout (9). When a participant has

problems receiving compensate messages from the

coordinator, it may receive the message in an unsuitable state

and wrongly execute the compensatory action. It means that

the participant receives the message without executing its

subtransaction (10), the participant receives a compensate

message when it has finished its participation in the

transaction (11), it receives the compensate message when it

has already executed its compensatory action (12) or it

receives the compensate message when it does not need to

execute any compensatory action (13).
One of the possible situations identified in (10) is that a

participant was in a failing state (14). This situation means that
a participant I was registered in a transaction wT and then,
while it was executing its subtransaction, the participant
reaches the failing state because a failure happened. One
possible situation in (11) is that a compensate message is
received when the participant has executed its subtransaction
and it was not necessary to execute the compensatory action,
therefore the participant is in the ended state (15).

Based on the situations identified in the leaf nodes, we can
define a test scenario for each one specifying the transaction
notifications to reach this situation. For example, the sequence
I [register]K - K[complete]I – I[fail]K – K[compensate]I
represents the test scenario for the situation specified in (14).
Test case for this scenario is shown in Section V.B.

Please note that only one branch of the large fault tree has
been presented. In the current version the whole fault tree
consists of 26 leaf nodes that represent potentially dangerous
situations that should be checked.

V. THE TRAVEL AGENCY EXAMPLE

This section presents the advantages of proposed approach
using a travel Agency example in which customers are offered

TABLE I. SYSTEM PROPERTIES

Composition
A wT is composed of subtransactions. That is,

S={s1, …, sn} S ෛ wT

Sorting
This shows that subtransactions can be executed in
parallel or serially by satisfying the wT specification. The

notation used is O(S)={si [;|] …[;|]sn}

Visibility
A wT allows other (sub)transactions to see the partial

results of its subtransactions.

Durability
When the transaction is finished successfully the results
will remain permanent in the system

Consistency
Subtransactions or their compensating transactions must
maintain the required consistency of web services

Recovery

A subtransaction can be undone executing its
compensatory action. ci. It moves the system from the

state to the previous state σi. So any wT can be undone
reaching an initial equivalent state if all executed
subtransactions are compensated.

Controllability
This requires that the coordinator has to ensure the
Composition, Consistency, Durability and Recovery

properties of the transactions.

Figure 3. Recovery Fault Tree

with the facilities for making travel arrangements as follows.
The Agency service receives an itinerary from a customer.
After checking the itinerary for errors, the process determines
which reservations to make, sending simultaneous requests to
the appropriate airline, hotel and car rental agencies. If any of
the reservation tasks fails, the itinerary is canceled by
performing the compensatory action and the customer is
notified of the problem. Agency service waits for confirmation
of the three reservation requests. Upon receipt of confirmation,
the Agency service notifies the customer and sends the
reservation confirmation and final itinerary details and makes
the payment.

A. Transaction Specification

wTagency is defined below using the notation specified in

Section III.A. Due to space limitation, we just show the

necessary requirements to illustrate the test case derived from

leaf node (14) (Fig. 3).

1) Definition

�����	
�=����	
�,���	
�,�����	
�,�����	
�,����	
�

�����
���	��={���	�����,�����	�, �����, ��, ��	�,�����,�����	����}

����	
�={����	�����,������	�,�ℎ����,�
��,� �	�,������}

���	
�={
���	�����,
�����	�,
ℎ����,

��,
 �	�,
�����}

�����	
�={!���	�����,!�����	�,!ℎ����,!
��,! �	�,!�����}

�����	
�={!∗
���	�����,!∗

�����	�,!∗
ℎ����,!∗

��,!∗
 �	�,!∗

�����}

����	
�={!′���	�����,!′�����	�,!′ℎ����,!′
��,!′ �	�,!′�����}
2) Subtransactions

sitinerary= To check the dates, places and customer information. It decides

the appropriate airline, hotel and car rental agencies to make the reservations.
sairline= To make the flight reservation using the itinerary information.

shotel= To make the hotel reservation using the itinerary information.

3) Compensatory actions

citinerary= �

chotel= To cancel the hotel reservation.

4) Initial states

σhotel= The hotel service has received the dates and destination of the travel.

5) Executed states

σ*
hotel= The room is booked in the hotel system according to the itinerary.

6) Compensated states

σ’itinerary= σ
*

itinerary

(7) Not received (8) Unsuitable state

(5) Participant

(4) Messages (2) Not executed (3) Incorrectly

(1) Recovery

(6) Coordinator

(9) TimeOut

(11) Finish (12) Compensated (13) MixedOutcome (10) Not complete

(14) Failing (15) Ended

σ'hotel= The room cancellation is registered in the hotel system. If the

cancellation was executed by the agency two days before the first reservation
day, or the cancellation was executed by the hotel company, the agency has

received the amount paid. If the cancellation was carried out by the agency

one day before the first reservation day, the agency has received 50% of the
amount paid.

B. Test Cases Using the Recovery Fault Tree

In this section a specific test is defined for the scenario

shown in the fault tree (leaf node (14), Fig. 3). The failure

scenario refers to a participant that received a compensate

message when it is in a failing state. This means that a

problem has occurred while the participant was executing its

subtransaction so that all its functionality could not have been

completed. Therefore if it receives a compensate message and

executes its compensatory action a failure will occur because

some features of the subtransaction will be undone when they

had not been carried out. In the Agency example there are four

participants involved in the transaction so this scenario must

be checked for each participant. An example of test case

definition for the Hotel participant following the previous

scenario is defined is shown in Table II.

If the implementation accepts the compensation message, a

failure appears. In this example the consequence would be the

loss of money for the Hotel company. Assume that the Hotel

had a problem while it was making the reservation so it did not

execute the charge. But if it receives the compensate message

and executes its compensatory action the Hotel will return to

the customer the money that he/she had supposedly paid.

VI. CONCLUSIONS AND FUTURE WORK

We presented a new approach to test long-lived

transactions in WS environments. Risk-based techniques are

applied in order to identify failures. In this paper, we have

shown the preliminary results including specific notations and

a set of system properties. We have also developed a risk

analysis of one of these properties, Recovery, using a Fault

Tree diagram. We have shown how to use our approach in

order to generate test cases specifications with an example.

Our future work is to validate the test cases in a real

implementation.

ACKNOWLEDGMENT

This work was partially funded by the Department of

Science and Technology (Spain) and ERDF funds under the

National Program for Research, Development and Innovation,

project Test4SOA (TIN2007-67843-C06-01, grant BES-2008-

004355

TABLE II. TEST CASE USING THE FAULT TREE ANALYSIS

Preconditions wTagency is correctly initialized.

Input

sequence

Hotelagency [register]K

K[complete]Hotelagency

Hotelagency[fail]K

K[compensate]Hotelagency

Expected Hotel ignores the compensate message so does not

output execute chotel. Thus the system remains in σhotel so σ
*
hotel

is not met. Hotel still waits for the failed message.

REFERENCES

[1] M. Younas, K. Chao, C. Lo and Y. Li, “An efficient transaction commit
protocol for composite web wervices,” 20th Int. conf. on Advanced
Information Networking and Applications, 2006, vol. 1

[2] Business Transaction Protocol. [Online]. Available: http://www.oasis-

open.org/committees/download.php/1184/2002-06-03.BTP_cttee_spec_1.0.pdf

[3] Web Services Composite Application Framework. [Online]. Available:
http://docs.oasis-open.org/ws-caf/ws-context/v1.0/OS/wsctx.html

[4] WS-BPEL. [Online]. Available: http://docs.oasis-
open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

[5] Web Service Coordination. [Online]. Available: http://docs.oasis-

open.org/ws-tx/wstx-wscoor-1.2-spec-os/wstx-wscoor-1.2-spec-os.html

[6] Web Service Atomic Transactions. [Online]. Available: http://docs.oasis-

open.org/ws-tx/wstx-wsat-1.2-spec-os/wstx-wsat-1.2-spec-os.html

[7] Web Service Business Activity. [Online]. Available: http://docs.oasis-

open.org/ws-tx/wstx-wsba-1.2-spec-os/wstx-wsba-1.2-spec-os.html

[8] G. Canfora and M. Di Penta, “Service-Oriented architectures testing: a
survey,” Lecture Notes in Computer Science, 2009, vol. 5413

[9] R. Lanotte, A. Maggiolo-Schettini, P. Milazzo, A. Troina, “Design and
verification of long-running transactions in a time framework,” Science
of Computer Programming, 2008, vol. 73, pp. 76-94.

[10] M. Emmi, R. Majumdar, “Verifying compensating transactions,”
Lecture Notes in Compute Science, 2007, vol. 4349, pp. 29-43.

[11] J. Li, H. Zhu, J. He, “Specifying and verifyng web transactions,” 28th IFI
WG 6.1 Int. conf. on Formal Techniques for Networked and Distributed
Systems, 2008, pp. 149-168

[12] M. Younas, B. Eaglestone and R. Holton, “A review of multidatabase
transactions on the web: from the ACID to the SACReD,” Lecture Notes
In Computer Science, 2000, vol. 1832, pp. 140-152.

[13] E. B. Moss, “Nested transactions: an approach to reliable distributed
computing,” Massachusetts Institute of Technology, Technical report
TR-260, 1981

[14] M. Younas, B. Eaglestone, R. Holton “A formal treatment of a SACReD
protocol for multidatabase web transactions,” LNCS, 2000, vol. 1873,
pp.899-908.

[15] H. Garcia–Molina and K. Salem, “Sagas,” ACM SIGMOD Record,
1987, vol. 16, pp. 249-259.

[16] M. Schäfer, P. Dolog, W. Nejdl, “An environment for flexible advanced
compensations of web service transactions,” ACM Transactions on the
Web, 2008, vol. 2, issue 2.

[17] S. Choi, H. Kim, H. Jang, J. Kim, S. M. Kim, , J. Song, and Y. Lee, “A
framework for ensuring consistency of Web Services Transactions,”
Information and Software Technology, 2008, vol. 50, pp.684-696.

[18] N. Lakhal, T. Kobayashi, H. Toyota, “FENECIA: failure endurable
nested-transaction based execution of composite Web services with
incorporated state analysis,” V LDB Journal, 2009, vol. 1, pp. 1-56.

[19] C. Guidi, R. Lucchi, and M. Mazzara, “A formal framework for web
services coordination,” Electronic Notes in Theoretical Computer
Science, 2007, vol. 180, pp. 55-70.

[20] S. Ehikioya, K. Barker, “A formal specification strategy for electronic
commerce,” IDEAS Symposium, 1997, pp.201.

[21] R. Casado, J. Tuya, “Testing transactions in service oriented
architectures,” 9th Int. conf. on Web Engineering, DC, 2009.

[22] J. Bennett, G. Bohoris, E. Aspinwall and R. Hall, “Risk analysis
techniques and their application to software development”, European
Journal of Operational Research, 1996, vol. 95, pp. 467-475.

[23] W. Vesley, F. Goldberg, N. Roberts and D. Haasl, “Fault tree
handbook,” NUREG-0492, U.S. Nuclear Regulatory Commission, 1981.

