

A framework to test advanced web services transactions

Rubén Casado, Javier Tuya

Department of Computing

University of Oviedo

Gijón, Spain

rcasado@lsi.uniovi.es, tuya@uniovi.es

Muhammad Younas

Department of Computing

Oxford Brookes University

United Kingdom

m.younas@brookes.ac.uk

Abstract—Transactions are a key issue in the reliability of

distributed applications because they ensure all the

participants achieve a mutually agreed outcome. However,

current research has given little attention to testing

transactions in web services. This paper presents a conceptual

framework, inspired in risk-based methodologies, to address

this gap. It also reports on preliminary results and identifies

future work.

Web service testing; web service transaction, SOA testing

I. INTRODUCTION

Transactions are a fundamental concept in building
reliable distributed applications. A transaction is a
mechanism to ensure all the participants in an application
achieve a mutually agreed outcome. Traditionally,
transactions have held the Atomicity, Consistency, Isolation
and Durability (ACID) properties, which form one of the
most important models of the distributed systems.

In Web Services (WS) environment, transactions are
complex, involve multiple parties, span many organizations,
and can have long duration. Strictly enforcing the ACID
properties is not appropriate to a loosely coupled world of
autonomous trading partners (represented through web
services) due to the increased length of time that forbids the
use of locks on resources, and hence makes roll-back
activities unsuitable. In order to deal with these new features,
various extended transaction models have been adapted for
WS. These models mainly relax the strict atomicity and
isolation policy of ACID properties so that intermediate
results of active transactions are visible to other transactions
[1].

Despite the fact that the literature presents a number of
approaches and techniques on WS testing, there is a lack of
research work on testing WS transactions [2]. To the best of
author´s knowledge, there are no works about testing
transactional requirements in WS environments. Some works
are focused on verifying the long-lived transactions from a
theoretical point of view. Lannotte et al. [3] developed a
model of communicating hierarchical timed automata
suitable to describe long-running transactions and the
automaton-theoretic approach allows the verification of

properties by model checking. Emmi et al. [4] use a
technique to translate programs with compensations to a tree
automata in order to verify the illusion of atomicity. Also Li
et al. [5] proposes a formal model to verify the requirement
of relaxed atomicity with temporal constraints whilst Gaaloul
et al. [6] use event calculus to verify the transactional
behaviour of WS compositions.

Our research studies the viability of a practical approach
to test the transactional requirements in WS environments.
This approach is inspired by the risks methodologies and
comprises several steps: i) deep study of the process, ii)
decompose the whole scope into subsystems, iii)
identification of hazards in each subsystem, iv) ways to
mitigate the likely faults. We have already adapted some of
these steps to test web transactions.

The rest of the paper is organized as follow. Section II
summarizes the general framework. The work done to date is
highlighted in Section III. Section IV comments the actual
and future work. Finally, conclusions are presented in
Section V.

II. CONCEPTUAL FRAMEWORK

The proposed conceptual framework to test WS
transactions is hierarchically organized in different levels.
The basic work is a thorough study and analysis of this kind
of transaction characteristics. Using that knowledge, the first
level presents a method to define functional transactional
requirements. The second level presents the division of the
process on subsystems. These subsystems, called transaction
system properties, represent general characteristics that have
to be checked in order to ensure the right functioning of a
WS transaction. The next level is where a risk analysis is
applied for each property in order to identify potential
failures and their possible causes. This analysis is carried out
by taking into account the current WS transaction standards
behaviour. With that information, the fourth level studies
how to apply testing techniques in order to generate test
scenarios and to mitigate the identified risks. In the last level
we will specify how to execute the proposed tests. Fig. 1
depicts the proposed framework.

© 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in

any current or future media, including reprinting/republishing this material for advertising or promotional purposes,

creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of

this work in other works. Original publication: Proceedings of the 4th International Conference on Software Testing,

Verification and Validation (ICST 2011), DOI 10.1109/ICST.2011.44

III. WORK DONE TO DATE

We have studied the evolution of transaction model

from ACID to current WS transactions approaches.

Review of Existing Transaction Models:

transaction is a unit of work that involves one or more

resources and is either completed in its entirety or is not

done at all. Participating resources are locked for the

duration of the transaction. When database

became distributed the well-known two phase commit

protocol (2PC) [7] was proposed to ensu

properties. Nevertheless the 2PC protocol cannot be

completely applied in some distributed transactions where

increased length of time forbids the use of locks on

resources. To deal with these problems the

Transaction Models (ATM) [8], were

Nested transaction model [9] proposed the idea to

decompose a transaction into subtransactions with

independency to commit. In the SAGA

subtransaction has associated a compensation

subtransaction that semantically undoes the effects of its

committed associate. A further analysis of web

transactions properties, and also a first approach of o

conceptual framework, was presented in

In order to manage WS transactions, several standard

specifications have been published. Business Transaction

Protocol (BTP) [12] is a specific framework to manage

transactions based on the 2PC but allow

lived transactions using an adaptation of the Nested

transaction model. Web Services Composite Application

Framework (WS-CAF) [13] is a set of WS specifications

for applications composed of multiple web services and

Web Services Transaction Management (WS

one to manage transactions. WS-TXM allow

.

Figure 1. Conceptual framework.

ATE

evolution of transaction models

transactions approaches.

Review of Existing Transaction Models: A

transaction is a unit of work that involves one or more

resources and is either completed in its entirety or is not

Participating resources are locked for the

duration of the transaction. When database systems

two phase commit

was proposed to ensure the ACID

properties. Nevertheless the 2PC protocol cannot be

completely applied in some distributed transactions where

increased length of time forbids the use of locks on

resources. To deal with these problems the Advance

were proposed. The

proposed the idea to

decompose a transaction into subtransactions with

 [10] model, each

subtransaction has associated a compensation

subtransaction that semantically undoes the effects of its

committed associate. A further analysis of web

transactions properties, and also a first approach of our

in [11].

transactions, several standard

specifications have been published. Business Transaction

is a specific framework to manage

transactions based on the 2PC but allows managing long-

lived transactions using an adaptation of the Nested

ervices Composite Application

is a set of WS specifications

for applications composed of multiple web services and

Web Services Transaction Management (WS-TXM) is the

TXM allows both 2PC

transactions and compensate

SAGA model. Both Web Service Atomic Transactions

(WS-AT) [14] and Web Service Business Activity (WS

BA) [15] are built on top of Web Service Coordination

(WS-COOR) [16]. WS-AT specific a classic 2PC protocol

to ensure ACID properties while WS

long-running transactions using the

The proposed framework:

conceptual framework, the first level defines a way to

specify functional transactional requirements. A model

and its notation were proposed in

decomposes the web service tran

independent subtransactions

compensation associated. For

identify three different sets of functional requirements

that should be checked:

• Initial state is the necessary requirement so that the

subtransaction can be executed.

• Executed state defines the requirements that have to

be satisfied once the subtransaction has correctly

finished.

• Compensate state defines the requirements that have

to be satisfied once the compensation has been

executed.

After the deep study of

transactions, especially in we

have identified a set of properties that have to be tested in

order to ensure the correct

systems properties are summarized in Table I.

explanation of these properties was presented in

transactions and compensate-based transactions using the

odel. Both Web Service Atomic Transactions

and Web Service Business Activity (WS-

uilt on top of Web Service Coordination

AT specific a classic 2PC protocol

to ensure ACID properties while WS-BA coordinates

running transactions using the SAGA model

The proposed framework: According to the

the first level defines a way to

specify functional transactional requirements. A model

and its notation were proposed in [17]. Our approach

decomposes the web service transaction in a set of

subtransactions each one with a

. For each subtransaction, we

identify three different sets of functional requirements

is the necessary requirement so that the

subtransaction can be executed.

defines the requirements that have to

d once the subtransaction has correctly

defines the requirements that have

once the compensation has been

After the deep study of state of the art about

transactions, especially in web service environments, we

have identified a set of properties that have to be tested in

order to ensure the correct behaviour. The transactions

systems properties are summarized in Table I. A further

explanation of these properties was presented in [18].

TABLE I. SYSTEM PROPERTIES

In the previous work we also presented the Fault Tree

Analysis (FTA) [19] for the recovery property and how it

can be used to define test cases. Fig. 2 depicts a small part

of the fault tree in order to model the risks of the WS

transaction compensatory mechanism, which include: the

compensatory action is not executed at all (2) or

incorrectly executed (3) or it fails due to the loss of

messages between the participants and the coordinator

(4). This could be due to problems with participant

messages (5) or coordinator messages (6). The problems

related to participant are that it does not receive the

compensation message (7), it receives the message when

it should not receive this message (8) or the compensate

message has finished with timeout (9).

When a participant has problems receiving

compensate messages from the coordinator, it could

receive the message in an unsuitable state and wrongly

execute the compensatory action. It means that the

participant receives the message without executing its

subtransaction (10), the participant receives a compensate

message when it has finished its participation in the

transaction (11), it receives the compensate message when

it has already executed its compensatory action (12) or it

receives the compensate message when it does not need to

execute any compensatory action (13). One of the

possible situations identified in (10) is that a participant

was in a failing state (14). One possible situation based in

(11) is that a compensate message is received when the

participant has already executed its subtransaction and it

was not necessary to execute the compensatory action

(15). Based on the situations identified in the leaf nodes,

we define a test scenario for each one specifying the

transactions notifications to reach this situation.

Figure 2. Recovery Fault Tree

IV. CURRENT AND FUTURE WORK

A short term work is to study which are the most

suitable testing techniques to check the rest of system

properties. As we have commented, FTA technique was

successfully applied for the recovery property.

Currently we have developed an abstract model to

pattern the participants in a web service transaction. It

describes semantically the behaviour of the participants

independently of the transaction protocol used. This

abstract model takes in account the possible faults that

may occur during the process. Now we are working to

apply model based testing techniques over that model,

thus the composition and controllability properties will be

covered.

Godart et al [20] have done a interesting work about

transactional patterns in web service compositions. We

have identified it as a key issue in the order property too.

So we are starting collaboration in order to study how to

apply flow based testing over composite service

transactional behaviour. For the rest of properties more

research is needed to select the suitable testing

techniques.

In order to validate our approach, firstly we will use

the test cases achieved using the framework over a

transaction simulation environment. We will apply fault

injection techniques to measure the quality of the

generated test cases. Using that information we will be

able to feedback the framework and therefore, improve

the test cases. The next step in the validation process will

be to execute the defined test cases in a real

implementation by developing the some simple examples

(i.e. using Jboss Transactions [21] API). A new useful

feedback will be used again to refine the framework.

Finally, we will execute the test cases in a real

application.

Composition
A web service transaction is composed of

independents subtransactions that may be executed
by independent services

Order
The subtransactions have a specific order of
execution. Also there are relationships between them

that have to be satisfied.

Visibility
A web service transaction allows other (sub)

transactions to see the partial results of its
subtransactions.

Durability
When the transaction is finished successfully the
results will remain permanent in the system

Consistency
Subtransactions or their compensating transactions
must maintain the required consistency of web

services

Recovery

A subtransaction can be undone executing its
compensatory action. So any web service transaction

can be undone reaching an initial equivalent state if

all executed subtransactions are compensated.

Controllability
This requires that the coordinator has to ensure the
Composition, Consistency, Durability and Recovery

properties of the transactions.

(7) Not received (8) Unsuitable state

(5) Participant

(4) Messages (2) Not executed (3) Incorrectly

(1) Recovery

(6) Coordinator

(9) TimeOut

(11) Finish (12) Compensated (13) MixedOutcome (10) Not complete

(14) Failing (15) Ended

CONCLUSIONS

Although transactions are a key issue in web service

compositions, there are no practical approach to test them.

The main contribution of our research is to create a

specific conceptual framework to testing web service

transactions. The framework is an adaptation of risk based

methodologies.

The work done to date seems to show the viability of

our approach. Also a clear line of research is specified to

follow in the current and future work.

ACKNOWLEDGMENT

This work was partially funded by the Department of
Science and Technology (Spain) and ERDF funds under
the National Program for Research, Development and
Innovation, project Test4DBS (TIN2010-20057-C03-01),
grant BES-2008-004355.

REFERENCES

[1] M. Younas, K. Chao, C. Lo, and Y. Li, “An Efficient Transaction
Commit Protocol for Composite Web Services,” International
Conference on Advanced Information Networking and
Applications (2006).

[2] G. Canfora, and M. Penta, “Service-Oriented Architectures
Testing: A Survey,” Software Engineering: International Summer
Schools, ISSSE 2006-2008, Salerno, Italy, Revised Tutorial
Lectures, Springer-Verlag, 2009, pp. 78-105.

[3] R. Lanotte, A. Maggiolo-Schettini, P. Milazzo, and A. Troina,
“Design and verification of long-running transactions in a timed
framework,” Science of Computer Programming (2008) 76-94.

[4] M. Emmi, and R. Majumdar, “Verifying Compensating
Transactions,” International Conference Verification, Model
Checking, and Abstract Interpretation (2007).

[5] J. Li, H. Zhu, and J. He, “Specifying and Verifying Web
Transactions,” International conference on Formal Techniques for
Networked and Distributed Systems (2008).

[6] W. Gaaloul, M. Rouached, C. Godart, and M. Hauswirth,
“Verifying composite service transactional behavior using event
calculus,” Proceedings of the 2007 OTM Confederated
international conference on On the move to meaningful internet

systems: CoopIS, DOA, ODBASE, GADA, and IS - Volume Part
I, Springer-Verlag, Vilamoura, Portugal, 2007, pp. 353-370.

[7] J. Gray, “Notes on Data Base Operating Systems, Operating
Systems, An Advanced Course,” Springer-Verlag, 1978, pp. 393-
481.

[8] M. Kaufmann, “Database Transaction Models for Advanced
Applications”.

[9] E.B. Moss, “Nested Transactions: An Approach to Reliable
Distributed Computing,” Massachusetts Institute of Technology
(1981).

[10] H. Garcia-Molina, and K. Salem, “Sagas,” Proc. SIGMOD 87
(1987) 249-259.

[11] R. Casado, and J. Tuya, “Testing Transactions in Service Oriented
Architectures,” International Conference on Web Engineering DC,
San Sebastian, Spain, 2009.

[12] OASIS, “Business Transaction Protocol,” http://www.oasis-
open.org/committees/tchome.php?wg-abbrev=business-
transaction.

[13] OASIS, “Web Services Composite Application Framework,”
http://www.oasis-open.org/committees/tc-home.php?wg-
abbrev=ws-caf.

[14] OASIS, “Web Services Atomic Transaction,” http://docs.oasis-
open.org/ws-tx/wstx-wsat-1.1-spec/wstx-wsat-1.1-spec.html.

[15] OASIS, “Web Services Business Activity,” http://docs.oasis-
open.org/ws-tx/wstx-wsba-1.1-spec-errata-os.pdf.

[16] OASIS, “Web Services Coordination,” http://docs.oasis-
open.org/ws-tx/wstx-wscoor-1.1-spec-errata-os/wstx-wscoor-1.1-
spec-errata-os.html.

[17] R. Casado, J. Tuya, and M. Younas, “Specifying and testing
recoverability requirements in WS-BusinessActivity transactions,”
Jornadas Cientifico-Tecnicas en Servicios Web y SOA, Valencia,
Spain, 2010.

[18] R. Casado, J. Tuya, and M. Younas, “Testing Long-Lived Web
Services Transactions Using a Risk-Based Approach,” Proceedings
of the 2010 10th International Conference on Quality Software,
IEEE Computer Society, 2010, pp. 337-340.

[19] W. Vesley, F. Goldberg, N. Roberts, and D. Haasl, “Fault Tree
handbook,” U.S. Nuclear Regulatory Commission, 1981.

[20] S. Bhiri, C. Godart, and O. Perrin, “Transactional patterns for
reliable web services compositions,” Proceedings of the 6th
international conference on Web engineering, ACM, Palo Alto,
California, USA, 2006, pp. 137-144.

[21] Jboss, “Jbosss Transaction,” http://jboss.org/jbosstm, 2010

