
Query-Aware Shrinking Test Databases
Javier Tuya, Mª José Suárez-Cabal, Claudio de la Riva

Universidad de Oviedo, Departamento de Informática
Campus Universitario de Gijón (SPAIN)

+34 985 182 049

{tuya, cabal, claudio} @uniovi.es

ABSTRACT
Keeping the test databases as small as possible leads to faster
execution of tests and facilitates the task of completing the test
cases and evaluating the actual outputs against the expected. In
this paper we present an automated approach to database
reduction that considers an initial database that may be a copy of
a production database and the set of queries that are executed
against it. The database is reduced in order to preserve the
coverage of the data with respect to the queries attaining large
reductions with very similar fault detection ability.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging - Testing
tools

General Terms
Reliability, Experimentation, Languages, Verification.

Keywords
Software testing; Database testing; MC/DC; Test-Suite
Reduction; Data Reduction; SQL Coverage.

1. INTRODUCTION
During the maintenance of software applications, two main kinds
of functional testing activities are performed: (1) development or
maintenance of test cases for new and updated features, and (2)
regression testing. Existing research in testing for database
applications focuses mainly on either the test data selection
criteria by defining a number of coverage criteria [9,11,12,15,16]
or the automatic generation of test cases [1-4,21]. There also
exists some work on regression testing that focuses on the
selection of test cases [10,20] or in the order of execution and the
number of resets of the test database [7,8].
On the other hand, test-suite reduction aims to find a
representative set of test cases to provide the same test coverage
as an original test suite [14], with a trade-off between reduction
and effectiveness in fault detection. In the context of database
applications, this may be applied to the number of test cases or to

the size of the test inputs.
Keeping test databases as small as possible entails a number of
benefits for both activities. In regression testing, the test cases are
executed faster because both the time of loading the test database
and executing each test is shorter. When maintaining test cases, a
small test database facilitates the design of new test inputs that
consider the new situations required by the changed
functionalities and the checking of the expected results against the
actual results. If the tests are designed for a completely new
feature, previous test databases may be reused and completed
with meaningful test data to consider the new features under test.
The issue addressed by this paper is the reduction of the data that
is present in a database in order be used as a basis for further
testing. The reduction takes as input a previously developed test
database or even a complete production database. In order to
include in the reduced database only a small set of suitable data,
discarding redundant data, the reduction is made for preserving
the coverage of the original database against the queries that are
executed. These queries can be taken from the execution of test
cases or from the real usage of the application. This process is
fully automated. A case study using a production database and
real queries shows a good trade-off between reduction and fault
detection ability. It attains large reduction of the number of rows
in the database while maintaining very similar fault detection
ability in relation with the original database.
The rest of the paper is organized as follows: Section 2 presents
an overview of the coverage criterion and the general approach to
database reduction along with an example. Section 3 details the
procedure for performing the reduction and Section 4 presents the
tool support available to automate this task. In Section 5 a case
study is presented and finally, Section 6 concludes.

2. INTRODUCTORY APPROACH AND
EXAMPLE
In this section we present the concept of coverage rules and
outline how these rules are used to reduce a database taking into
account a set of queries.

2.1 Coverage Rules
Consider the following SQL query:
SELECT * FROM departments D LEFT JOIN
 job_history H ON h.department_id=d.department_id
WHERE department_name NOT LIKE 'IT%'
 AND location_id<>1700

This query is executed against the example database HR (Human
Resources) which is bundled with the Oracle Database

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DBTest’09, June 29, 2009, Providence, Rhode Island, USA.
Copyright 2009 ACM 978-1-60558-706-6/09/06...$5.00.

tuya
Cuadro de texto
© ACM 2009. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version of Record has been published in Proceedings of the 2nd international workshop on Testing database systems, Article no. 6, ACM New York, NY, USA, ISBN: 978-1-60558-706-6DOI: http://dx.doi.org/10.1145/1594156.1594164

Management System. This database contains information about
the jobs performed by the employees that belong to a department,
plus some other master tables such as jobs, locations, regions and
countries.
An approach to designing tests for SQL queries based on the
MC/DC coverage criterion has been suggested previously in [17].
Using this approach, the tester should design a test database for
covering the following situations:

• Include rows such that the where conditions on
department_name and location_id are: (C1) both true, (C2)
true and false and (C3) false and true, respectively.

• As location_id may be null (as indicated in the database
schema), include rows such that (N1) location_id is null and
the condition on department_name is true

• As there is a join, include rows such that (J1) there exists a
master (departments) without detail (job_history), and (J2)
there exist a detail without master (this situation is possible
because the foreign key column department_id in
job_history is nullable).

Each of these situations specifies a test requirement that can be
expressed in SQL and constitutes a Coverage Rule. For instance,
three of the coverage rules for the above query are:
(C1): SELECT * FROM departments D INNER JOIN
job_history H ON h.department_id = d.department_id
WHERE (department_name NOT LIKE 'IT%') AND
(location_id <> 1700)

(N1): SELECT * FROM departments D INNER JOIN
job_history H ON h.department_id = d.department_id
WHERE (location_id IS NULL)
AND (department_name NOT LIKE 'IT%')

(J1): SELECT * FROM departments D LEFT JOIN
job_history H ON h.department_id = d.department_id
WHERE ((H.DEPARTMENT_ID IS NULL)
AND (D.DEPARTMENT_ID IS NOT NULL))
AND (department_name NOT LIKE 'IT%' AND
location_id <> 1700)

Given a previously populated test database, the execution of the
SQL statement that expresses a coverage rule will determine
whether this situation is covered if the output produced by the rule
contains at least one row.
The coverage rules used in this paper are based on Masking
MC/DC [5] or Full Predicate Coverage [13] and allow to measure
the coverage of a test database against a set of queries or be used
as a test input selection criterion. A complete description of the
coverage rules and the procedure for automatically obtaining
them is detailed elsewhere [19] . The scope of this paper is the use
of the coverage rules to reduce a previously populated database
with the goal of preserving the same coverage as the original.

2.2 Database Reduction
Let us illustrate the approach with an example. The output
produced by the coverage rule C1 when executed against the HR
database is included in Table 1 (only relevant columns are shown,
primary keys are in bold).

In order to have a reduced database that covers the rule we need
only to consider the rows of tables departments and job_history
that correspond to only one of the rows in the output presented in

Table 1. For instance, the first row is kept, the reduced database
will be composed by a department with ID=20 and a job history
record with ID=20 and start_date=17/02/96 which fulfills the
rule C1. All other rows may be discarded.

Table 1. Output produced by rule C1
DEPARTMENTS JOB_HISTORY
ID NAME LOCATION START_DATE ID
20 Marketing 1800 02/17/96 20
50 Shipping 1500 03/24/98 50
50 Shipping 1500 01/01/99 50
80 Sales 2500 03/24/98 80
80 Sales 2500 01/01/99 80

In short, the approach is the following: We collect a set of SQL
queries that are executed against the original database. Next, for
each query we generate and execute each coverage rule and
process the output produced by browsing each output row and
selecting only one. The constituent rows will be added to the
reduced database. For each rule the criterion for selecting an
output row will be that of minimizing the cost of adding new rows
to the reduced database, measured in terms of the number of
additional rows that have to be added to the reduced database.
Finally, the set of rows that have been kept will constitute the
reduced database.

3. FINDING REDUCED ROWS
In this section we provide the internal details of the procedure for
obtaining a reduced database using as the only source of
information the database and a set of queries.

3.1 Data Structures
Figure 1 depicts the main data structures used in the process of
finding the reduced rows.

During the reduction process, the information of the rows that are
to be added to the reduced database is maintained in memory
(only the values of the primary keys of the rows are stored). The
PhysicalDatabase class stores the information about the tables
and rows that will compose the final reduced database. The
QueryDatabase class stores the same information, but related to
the tables used by a single query. Additionally, the metadata for
tables and the database itself are stored and linked to all databases
and tables. The Database class is an abstract class that provides
the common methods to locate and process tables. At this moment
the AliasDatabase class may be ignored.

During the reduction process a single instance of
PhysicalDatabase is created (reducedDB) and for each rule two
instances of QueryDatabase (bestDB and currentDB) are created.

3.2 Reduction Procedure and Costs
The reduction algorithm will process each query and will add to
the reducedDB the minimum set of rows that cover all rules.
Given a set of queries, the algorithm to select the rows that are
stored in the reducedDB is presented in Figure 2 and described
below.

Firstly, the set of tables that take part in the query and their
associated metadata are loaded both in bestDB and currentDB by
calling getTable() and getNewTable() methods.

After all tables for a query have been loaded, each coverage rule
is executed. The bestDB and currentDB store a solution which is
constituted by a set of rows. The first one stores the best solution
found up to now and the other stores the current solution. Then
each output row is traversed. For each one, the primary keys of
the constituent tables are used to create Row instances which are
stored in currentDB.

Now the cost of inserting the rows of currentDB into the
reducedDB is calculated as the number of rows of currentDB that
are not present in reducedDB. So as, if the cost is lower than the
cost of inserting bestDB into reducedDB, there is a new solution
that replaces bestDB (with the exception of the first output row).

At the end, bestDB contains a set of rows that cover the rule and
that are added to the reducedDB. The procedure continues for the
next rule of each query.

3.3 Aliased Tables
Tables in an SQL query may be referenced using an alias so as
that the same table may appear more than once in the query and
handled as if it were a different table. However both refer to the
same set of rows.

The AliasDatabase class is designed to handle this situation. All
aforementioned operations on the QueryDatabase class are
performed on AliasDatabase instead (bestDB and currentDB are
instances of AliasDatabase) which forwards its calls another pair
of instances of QueryDatabase. The structure of each instance of

AliasDatabase is the same, but the only difference is that it does
not store new rows, but a reference to the rows contained in the
QueryDatabase instances instead. In this way a row added to a
table using a given alias is visible when using any other alias that
refers to the same table.

3.4 Populating the Reduced Database
After the reduction process, reducedDB contains in memory all
the rows (primary keys) of the final database that preserve the
coverage. However, some additional rows that refer to master
tables must be added in order not to violate referential integrity.
The procedure is handled by the ensureFKs() method which
proceeds recursively for each table and for each row in
reducedDB. At each row it looks for each foreign key and checks
whether the corresponding referenced row has been loaded
previously. If not, a recursive call to load each referenced row is
made to ensure referential integrity. A flag is maintained for each
visited row in order to perform the recursive calls only once per
row.

Now all rows that are present in reducedDB ensure the referential
integrity. The next task is to create the final reduced database.
The approach taken is to perform a copy of the rows in
reducedDB from the original database to the reduced database
(which must have the same schema) as indicated in the steps
below:

1. Temporally disable all foreign keys (this step is required if
there are recursive relations between tables).

2. Perform a delete of all destination tables from the bottom to
the top of the database schema (to perform a clean insert).

3. Execute the SQL commands that will copy each row in each
table from the top to the bottom. An SQL query in the form
INSERT INTO DestTable (columns) SELECT (columns)
FROM OrigTable WHERE key columns are equal to the
values in reducedDB.

4. Enable referential integrity

As an example, the following script would be generated for the
introductory example. In order to keep it short, only two queries
for each step are presented:
ALTER TABLE HR2.JOB_HISTORY DISABLE CONSTRAINT
 JHIST_DEPT_FK;
ALTER TABLE HR2.DEPARTMENTS DISABLE CONSTRAINT
 DEPT_LOC_FK;
DELETE FROM HR2.JOB_HISTORY;

+getTable()
+getNewTable()

Database

+getNewTable()
+ensureFKs()

PhysicalDatabase

+getNewTable()

QueryDatabase

+getNewTable()

AliasDatabase

+addRow()
+ensureFKs()

Table

+ensureFKs()
-primaryKeyValues

RowTableMetadata

1
* 1 *

1 1

1 1 1 1

DatabaseMetadata

*
*

Figure 1. Main Data Structures used in the Reduction

Let reducedDB=new PhysicalDatabase()
For each query Q
 For each coverage rule of Q
 Let bestDB=new QueryDatabase()
 Let currentDB=new QueryDatabase()
 Obtain and load in bestDB and currentDB all tables
 involved in the query (without rows)
 Execute the coverage rule against the original database
 For each output row
 Add the constituent rows to currentDB
 If cost of inserting currentDB in reducedDB
 < cost of inserting bestDB in reducedDB
 OR the first row is being processed
 Let bestDB=currentDB
 Add rows of bestDB to reducedDB

Figure 2. Algorithm to select the reduced rows

DELETE FROM HR2.DEPARTMENTS;
INSERT INTO HR2.DEPARTMENTS (DEPARTMENT_ID,
 DEPARTMENT_NAME, MANAGER_ID, LOCATION_ID) SELECT
 DEPARTMENT_ID, DEPARTMENT_NAME, MANAGER_ID,
 LOCATION_ID FROM HR.DEPARTMENTS WHERE
 DEPARTMENTS.DEPARTMENT_ID=10;
INSERT INTO HR2.JOB_HISTORY (EMPLOYEE_ID,
 START_DATE, END_DATE, JOB_ID, DEPARTMENT_ID)
 SELECT EMPLOYEE_ID, START_DATE, END_DATE,
 JOB_ID, DEPARTMENT_ID FROM HR.JOB_HISTORY WHERE
 JOB_HISTORY.EMPLOYEE_ID=122 AND
 JOB_HISTORY.START_DATE=DATE '1999-01-01';
ALTER TABLE HR2.DEPARTMENTS ENABLE CONSTRAINT
 DEPT_LOC_FK;
ALTER TABLE HR2.JOB_HISTORY ENABLE CONSTRAINT
 JHIST_DEPT_FK;

4. TOOL SUPPORT
The QAShrink Tool (Query-Aware Shrink) has been implemented
in order to automate the whole process. It can be downloaded
from http://in2test.lsi.uniovi.es/sqltools/qashrink. Currently it has
been tested with the Oracle and SQLServer database management
systems.
The user interface of QAShrink is depicted in Figure 3. The user
has to specify the connection information of the database and the
set of queries that are to be used for the reduction. Additionally,
the name of the destination database where the selected rows will
be copied has to be specified. Firstly, it generates all coverage
rules for the queries and then these rules are used to perform the
reduction as explained in previous sections.
The figure presents the information after shrinking the example
database taking into account five queries, the first one being the
same as has been used in the examples. First the queries are
analyzed to remove duplicates. After running the reduction (Do
Shrink command) the size of the database is presented on the left
side of the screen, with information about the original number of
rows for each table, the number of rows that are loaded to satisfy
the coverage rules, the total number of rows of the reduced

database (which also includes the rows that are needed to ensure
referential integrity) and the percent reduction (percentage of
rows that are eliminated).
On the right side of the screen, information of each query is
presented. The cost is the number of rows that have been added to
ensure the coverage. It can be shown that in the figure, queries 3
and 4 have a zero cost, because all rows added for covering query
1 will also cover them. Also, there are only 4 queries because the
last one is duplicated and then removed.
Once the shrinking has been done, the user may view the
commands that will create the reduced database or execute them
in order to populate the reduced database.

5. CASE STUDY
In this section we present a case study and show the results of the
reduction. We use a real-life helpdesk application and a copy of
the production database. The helpdesk application manages
change and support requests (Ticket), which may be transferred to
other technicians or change their state using history records
(TicketHistory) associated to each ticket. The application has
other capabilities such as keeping bookmarks, attachments, and a
complete security subsystem that issues queries to determine
whether it allows or denies access to the stored information on the
basis of special privileges and groups for each type of transaction
(create, update, read) into each object (ticket, history record,
ticket list).

The production database used is implemented in SQL Server and
has 22,387 tickets with 103,553 history records and 279 users. In
total the database contains 137,490 rows spread over 31 tables.

Four main questions arise in relation to the feasibility of the
approach presented in this paper. With regard to the efficiency:

a) What is the degree of reduction that can be attained?
b) What is the performance of the approach as automated by

QAShrink?

Figure 3. User Interface of the QAShrink Tool

With regard to the effectiveness:

c) Is the coverage measured in the original database preserved
by the reduced database?

d) Is the fault detection ability of the original database
preserved by the reduced database?

5.1 Efficiency Considerations
We recorded the queries that are being executed against the
database during the use of the application in a number of different
user sessions. In total, 988 queries were recorded which, after
removing duplicates, led to 198 different queries used for the
reduction process.

In relation with question a), Table 2 displays the size of each table
before and after the reduction (CovAfter shows the number of
rows after reduction, excluding the rows needed to preserve the
referential integrity). The size of the database drops from 137,490
to 223 rows. The reduction is 99.84% measured as the percentage
of rows eliminated. Although we can not claim that this is the
optimum (because it would depend on the order of the queries),
the magnitude of the reduction is very large, especially for the
tables that have many rows.

Table 2. Size of the database for each table (before and after)
Table Name Before CovAfter After Red (%)
DBPermission 309 11 11 96.44
UserPreference 332 11 11 96.69
DataBase 5 2 4 20.00
SQLSELECTType 5 2 2 60.00
User 279 21 25 91.04
SQLTypeCriterion 52 7 9 82.69
Ticket 22,387 27 33 99.85
SQLCategoryCriterion 23 3 4 82.61
SQLStatusCriterion 37 5 6 83.78
SQLScopeCriterion 5 3 3 40.00
SQLOrderCriterion 13 4 5 61.54
SQLConjunction 2 1 1 50.00
SQLWhereFind 11 4 4 63.64
SQLOtherCriterion 5 2 2 60.00
Category 24 8 11 54.17
Status 32 16 18 43.75
Priority 3 2 3 0.00
OrganizationType 10 4 7 30.00
Type 66 7 14 78.79
Attachment 3,013 4 4 99.87
TicketAttachment 2,898 3 3 99.90
TicketHierarchy 3,880 4 4 99.90
Bookmark 321 6 6 98.13
TicketHistory 103,553 8 8 99.99
NextStatus 45 6 6 86.67
NextStatusUser 70 6 6 91.43
NextStatusUserAct 36 1 1 97.22
PermissionOnType 33 2 2 93.94
PermissionOnGroup 34 4 4 88.24
Organization 3 3 0.00
TypeClass 4 3 25.00
TOTAL 137,490 184 223 99.84

With regard to question b), the time needed to select all rows to
be kept in the reduced database was 86.6 seconds, with a total
elapsed time of 125.2 seconds plus 3.7 seconds in executing the
SQL commands to copy the rows from the original database to the
reduced one. An Intel Core 2 Duo 2.2 GHz processor with a local

database has been used for the experiments. In total 335,191
output rows were read during the evaluation of all coverage rules.

That figures show a very good performance in the reduction of a
production database, both in the size of the reduced database and
in the time spent for this task.

5.2 Efficacy Considerations
In order to check the question c), the coverage rules were
executed against both the original database and the reduced
database and the percent coverage measured. This information is
displayed in the first row in Table 3.

Table 3. Coverage and Mutation Score before and after the
reduction

 Before Reduction After Reduction
 Number

Rules/
Mutants

Covered/
Dead

Coverage/
Mutation
Score

Covered/
Dead

Coverage/
Mutation
Score

Coverage 1,869 889 47.57% 959 51.31%
Mutation
Score 78,844 50,014 63.43% 49,703 63.04%

At first glance, the expected result would be to achieve a lower or
equal coverage than using the original database, but the actual
result is that coverage increases in the reduced database. After
examining the cause of that increase, we found that this is caused
by the rules intended to measure the coverage of joins. The
original database is a copy of a production database that has been
used for several years. Therefore, as all rows in most master
tables have at least one related row in their detail table, these rules
are not covered. However, as the reduction process removes many
rows, the final database contains the situations in which there is
some row in a master table without any related row in the detail,
leading to a coverage increase.
In relation with question d), we generated a set of mutants for
each query. These mutants include conventional mutants and
others specifically designed for SQL [18]. As in the previous case
the mutation score was measured against both the original and the
reduced database and the results given in the second row in Table
3.
In this case the mutation score decreases, but less than 0.5%,
which is a very good score, taking into account that the reduced
database has far fewer rows. Although not directly comparable,
these results show lower effectiveness loses than other results for
non database applications [14]. That implies that the reduced
database contains a very diverse set of rows that are good enough
to be used for testing purposes in the sense that they have
approximately the same fault detection ability measured in terms
of mutants.

6. CONCLUSION
We presented an automated approach for the reduction of test
databases which attains a good trade-off between the percentage
of reduction and the fault detection ability. Given a set of queries
and an original test database we select a minimum set of rows that
satisfy the coverage of the database with respect to the queries
and populate a new reduced test database which only contains the
selected rows. As shown in the case study, it performs efficiently
and the resulting reduced database has very similar fault detection
ability to the original one. The case study shows the results

obtained from a production database which has been reduced by
99.84% (measured in the number of rows that are eliminated),
while the mutation score only decreases by less than 0.5%.
This work may be completed in two main different directions.
First, this approach takes isolated queries and does not consider
the effects of updates which may have influence on the
subsequent queries. These effects and the possible combination
into a complete framework of test suite reduction (both reducing
the number of tests and the data) may be a point for future
research. On the other hand, currently queries with joins and alias
are considered, but additional work must be done to incorporate
some other features such as views, subqueries or groupings.
Nevertheless, the approach is potentially useful in helping the
tester in the elaboration of new test cases or complete existing
ones by starting from a previously populated database which
includes a suitable set of test data taken from other tests or from a
production database.

7. ACKNOWLEDGMENTS
This work has been funded by the Department of Science and
Innovation (Spain) and ERDF Funds (TIN2007-67843-C06-01),
the Government of the Principality of Asturias (CN-07-168) and
the Government of Castilla-La Mancha (PAC-08-0121-1374).

8. REFERENCES
[1] Binnig, C., Kossmann, D. and Lom, E. MultiRQP -

Generating Test Databases for the Functional Testing of
OLTP Applications. Proceedings of the 1st international
workshop on Testing database systems. ACM New York,
NY, USA, 2008.

[2] Binnig, C., Kossmann, D. and Lo E. Reverse Query
Processing. Proceedings of the 23rd International
Conference on Data Engineering. IEEE Computer Society,
Washington, DC, 2007; 506-515.

[3] Chays, D., Deng, Y., Frankl, P.G., Dan, S., Vokolos, F.I. and
Weyuker, E.J. An AGENDA for Testing Relational Database
Applications. Software Testing, Verification and Reliability
2004; 14 (1): 17-44.

[4] Chays, D., Shahid, J. and Frankl, P.G.. Query-based Test
Generation for Database Applications. Proceedings of the 1st
international workshop on Testing database systems. ACM
New York, NY, USA, 2008.

[5] Chilenski, J.J. An investigation of three forms of the modified
condition decision coverage (MC/DC) criterion. Technical
Report DOT/FAA/AR-01/18, U.S. Department of
Transportation, Federal Aviation Administration, April 2001.

[6] Emmi, M., Majumdar, R. and Sen, K. Dynamic Test Input
Generation of Database Applications. Proceedings of the
2007 International Symposium on Software Testing and
Analysis, ACM, New York, NY, 2007; 151-162.

[7] Haftmann, F., Kossmann, D. and Kreutz, A,. Efficient
Regression Tests for Database Applications. Proceedings of
the 2nd Conference on Innovative Data Systems Research,
2005: 95-106.

[8] Haftmann, F., Kossmann, D. and Lo, E. A framework for
efficient regression tests on database applications. The VLDB
Journal 2007; 16 (1): 145-164.

[9] Halfond, W.G.J. and Orso, A. Command-Form Coverage for
Testing Database Applications. Proceedings of the 21st
IEEE/ACM International Conference on Automated Software
Engineering. IEEE Computer Society, Washington, DC,
2006; 69-80.

[10] Haraty, R.A., Mansour, N., and Daou, B. Regression test
selection for database applications. In Siau K (Ed.),
Advanced Topics in Database Research, vol. 3, Idea Group,
2004; 141-165.

[11] Kapfhammer, G.M. and Soffa, M.L. A Family of Test
Adequacy Criteria for Database-Driven Applications.
Proceedings of the 9th European software engineering
conference /11th ACM SIGSOFT international symposium
on Foundations of software engineering. ACM Press, New
York, NY, 2003; 98–107.

[12] Kapfhammer, G.M. and Soffa, M.L. Database-Aware Test
Coverage Monitoring. Proceedings of the 1st conference on
India software engineering conference. ACM, New York,
NY, 2008; 77-86.

[13] Offutt, J., Liu, S., Abdurazik, A. and Ammann, P.
Generating test data from state-based specifications.
Software Testing, Verification and Reliability 2003; 13(1):
25–53.

[14] Rothermel, G., Harrold, M.J., von Ronne, J. and Hong, C.
Empirical studies of test-suite reduction. Software Testing,
Verification and Reliability 2002; 12(4): 219-249.

[15] Suárez-Cabal, M.J. and Tuya J. Using an SQL Coverage
Measurement for Testing Database Applications.
Proceedings of the 12th ACM SIGSOFT Symposium on the
Foundations of Software Engineering, ACM, New York,
NY, 2004; 253 – 262.

[16] Suárez-Cabal, M.J. and Tuya J. Structural Coverage Criteria
for Testing SQL Queries. Journal of Universal Computer
Science 2009; 15(3): 584-619.

[17] Tuya, J., Suárez-Cabal, M.J. and de la Riva, C. A practical
guide to SQL white-box testing. ACM SIGPLAN Notices
2006; 41(1).

[18] Tuya, J., Suárez-Cabal, M.J. and de la Riva, C. Mutating
Database Queries. Information and Software Technology
2007; 49 (4): 398-417.

[19] Tuya, J., Suárez-Cabal, M.J. and de la Riva, C. Full
Predicate Coverage for Testing SQL Database Queries.
Submitted, February 2009.

[20] Willmor, D. and Embury, S.M. A safe regression test
selection technique for database–driven applications.
Proceedings of the 21st IEEE International Conference on
Software Maintenance. IEEE Computer Society,
Washington, DC, 2005; 421-430.

[21] Willmor, D. and Embury, S.M. An Intensional Approach to
the Specification of Test Cases for Database Applications.
Proceedings of the 28th international conference on
Software engineering. ACM New York, NY, USA, 2006;
102-111.

