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Abstract 

This paper presents a tabu search metaheuristic algorithm for the automatic generation 

of structural software tests. It is a novel work since tabu search is applied to the 

automation of the test generation task, whereas previous works have used other 

techniques such as genetic algorithms. The developed test generator has a cost function 

for intensifying the search and another for diversifying the search that is used when the 

intensification is not successful. It also combines the use of memory with a 

backtracking process to avoid getting stuck in local minima. Evaluation of the generator 

was performed using complex programs under test and large ranges for input variables. 

Results show that the developed generator is both effective and efficient. 
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1 Introduction 
The application of Metaheuristic Algorithms to solve problems in Software Engineering 

was proposed by the SEMINAL project (Software Engineering using Metaheuristic 

INnovative Algorithms) and is detailed in [1]. One of these applications is the test 

generation process of Software Testing. 

Software Testing consists of a set of activities conducted with the aim of finding errors 

in software. As the number of test cases1 needed for fully testing a software program is 

a huge number [2], in practice, it is impossible to achieve a fully tested program. It has 

been estimated that software testing entails 50 percent of software development [3]. 

This cost can be significantly reduced with the automation of test generation. Among 

the different approaches used for the automation of this process, we may distinguish 
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between specification-oriented approaches (or black-box testing), which generate the 

test cases from the program specification, and implementation-oriented approaches (or 

white-box testing), which generate the test cases from the code of the program under 

test.  

Test cases have to be generated according to the test adequacy criterion [4], which ‘is 

considered to be a stopping rule that determines whether sufficient testing has been 

done … and provides measurements of test quality’. Some of these criteria are the 

structural criteria that specify testing requirements in terms of the coverage of a 

particular set of elements of the program under test or its specification. Previous work 

on automatic test generation for structural criteria can be divided into static methods (as 

for example [5]) that generate the tests2 without executing the program under test, and 

dynamic methods (as for example [6]) that carry out a direct search of the tests through 

the execution of the program, which has to be previously instrumented. The most recent 

dynamic methods for automatic test generation use the metaheuristic search techniques 

called genetic algorithms and simulated annealing where the testing problem is treated 

as a search or optimization problem. One of these metaheuristics, genetic algorithms 

[7], is the most widely used technique.  

The first work that suggested the use of genetic algorithms for the structural test 

generation was [8] in 1992. However, it is from 1995 on when genetic algorithms began 

to be used frequently for the automatic generation of tests. [9] used genetic algorithms 

for the search of tests that cover a path or a set of paths of the program under test (data-

flow criteria), and a genetic generator was developed in [10] for the branch coverage 

criterion. Subsequently, the doctoral thesis [11] investigated how the variations in the 

genetic parameters (mutations, crossover, fitness function...) influence the results 

obtained by a genetic generator for achieving branch coverage and loop coverage. Some 

of these results are also published in [12] and [13]. On the other hand, TGen [14] was 

developed for the statement coverage and branch coverage criteria. TGen introduces the 

variation of using the control dependence graph [15] instead of the control flow graph 

(which will be detailed in Section 2) used by other genetic generators. [16] proposed a 

fitness function called SIMILARITY that was used by their system to search tests that 

cover a selected path of the program under test. 

                                                 
2  We refer to test as a set of test inputs of a test case since, in structural testing, the goal is concentrated in 
the generation of test inputs (this way, the oracle problem is not considered). 
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The aforementioned works use binary encoding limited to a representation that allows 

only integer types, in contrast with [17, 18, 19, 20], which are capable of generating 

tests for programs with input variables of a real type. Wegener et al. [17] showed an 

evolutionary test environment that performs automatic test data generation for most 

structural test methods, presenting its results for the branch coverage criterion. Michael 

et al. [18] reported a system, called GADGET, for the condition/decision coverage 

criterion. GADGET has two different implementations: standard [7], which uses a 

binary representation, and differential [21], which allows a representation defined by the 

user to be used. In the work [19] genetic algorithms are used for the search of tests that 

reach a goal path. This generator accepts real data type but its representation is binary. 

As in the aforementioned paper, the system described in [20] also has the goal of path 

testing and uses binary encoding. 

However, there are few studies based on simulated annealing for automatic test 

generation with structural criteria. On the one hand, there is the work presented in [22] 

for the branch coverage criterion and on the other the work presented in [20], which, 

like their genetic generator, is intended for path testing. 

Another metaheuristic technique that can be applied to automatic test generation is tabu 

search [23]. There are a great variety of real-world problems that can be solved by tabu 

search, such as job shop scheduling [24], multiprocessor task scheduling [25], vehicle 

routing problems [26], graph coloring [27] and many other combinatorial optimization 

problems [28, 29]. However, although tabu search is cited in several studies in software 

testing, such as [18] or [22], no data have been reported with the exception of our initial 

study [30]. This is the reason why we detail in this paper how tabu search can be 

applied to the automatic generation of tests to obtain branch coverage and present the 

results obtained. 

In relation to our initial work [30], this paper includes important novelties as for 

example the use of two cost functions (one is used to intensify the search and the other 

to diversify the search), the improvement of the process for the generation of neighbour 

candidates (which includes four cases for the automatic adjustment of the steps) and a 

more elaborated backtracking process that incorporates three stages of performance. 

Moreover, in this paper we present the results of the application of Tabu Search to test 

generation together with a summary of previous related work with other metaheuristic 

techniques and a discussion about their published results. 
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The rest of the paper is organized as follows. The next section describes the problem of 

the automatic generation of tests for the structural branch coverage criterion and the tool 

scheme that we have developed. Section 3 details our test generator based in Tabu 

Search. In Section 4 the results published in previous works are summarized and our 

results are presented and analysed. Finally, Section 5 includes the conclusions of this 

paper. 

2 Problem overview 
The combination of program-oriented approaches with structural criteria produces 

testing methods called Program-Based Structural Testing methods. For these methods, 

most adequacy criteria are based on the flow graph model of the program structure. A 

flow graph (or control flow graph) [31] is a directed graph G=(N, E, s, e), where N is a 

set of nodes, E is a set of directed edges (arcs) aij between nodes of the form (ni,nj), 

being ni,nj∈N (E ⊆ N x N), s (s∈N) is the initial node and e (e∈N) is the final node of 

the graph. Each node n∈N represents a linear sequence of computations for the program 

under test. Each arc aij represents the transfer of the execution control of the program 

from the node ni to the node nj when the associated arc condition (or decision3) is true. 

The branch coverage criterion (also known as the decision coverage criterion) requires 

all control transfers (decisions) to be exercised during testing. The percentage of 

decisions executed is a measurement of test adequacy. Thus, for the branch coverage 

criterion, an automatic test generator is totally effective if it generates a set of test inputs 

T that covers all feasible decisions. Moreover, the automatic generation of T must be 

carried out consuming a reasonable time (efficiency), since the automatic test generation 

is carried out in order to reduce the manual time taken up by this task, thus reducing the 

final cost in the testing process. 

Tabu search, on the other hand, is a metaheuristic search technique based on the use of 

historical information about a neighbourhood search aimed at helping the search to 

overcome local optima. The general algorithm of tabu search is based on that of the next 

k neighbours while maintaining memory that avoids repeating the search in the same 

area (tabu) of the solution space. The details about tabu search can be consulted in [23, 

29, 32].  

                                                 
3 A decision can be formed by a simple condition or composed of several conditions 
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The application of tabu search to automatic test generation requires the creation of an 

automatic generator in which the problem of test generation must be represented in 

terms of tabu search elements (solutions, cost function and many other elements). In this 

respect, we have developed a test generator based on tabu search, called TSGen (Tabu 

Search Generator), that uses the general scheme of tabu search to generate a set of 

coverage tests and which has several additional elements (as for example a backtracking 

process) for improving its results even further. TSGen will be detailed in the next 

section. 

Like dynamic test generators, TSGen generates the tests from an instrumented version 

of the program under test. As manual program instrumentation is a heavily time-

consuming task and may introduce errors with the consequent errors in test generation, 

we have created a tool that automatically carries out the entire process related to test 

generation and in which TSGen is integrated. The scheme of this tool appears in Figure 

1. 

Our tool uses the C/C++ source code of the program under test and automatically 

generates the tests needed to achieve branch coverage. To do so, it has three modules: 

• A parser/control flow graph generator that creates the needed control flow graph 

(called CFG) from the source code under test. 

• A parser/instrumenter that creates the instrumented source code from the CFG 

and the source code under test. 

• TSGen, which generates tests and obtains the results from the instrumented 

source code and the CFG. 

The CFG stores which branches have been covered together with a great deal of other 

pertinent information, such as for example the best solutions found. In our CFG, each 

program branch is represented by a node that stores the branch decision (among many 

other data). The program loops are treated as branches and represented as nodes that 

store the loop decisions. The nodes representing decisions are the CFG decision nodes. 

The CFG also has a root node (initial node) and non-decision nodes which represent 

pieces of unconditional code. For instance, Figure 2 depicts a simple example of a 

program and its corresponding CFG. It has seven nodes: the root node (node 0), two 

non-decision nodes (node 4 and 6) and four decision nodes (nodes 1, 2, 3 and 5) for 

which TSGen has to find the tests that cover them. 
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Furthermore, although branch coverage is treated in this paper, the modularity of our 

tool allows other coverage criteria to be used without carrying out too many changes. In 

this respect, we have also implemented condition/decision coverage by modifying the 

parser modules to divide the decisions in conditions and without changes in TSGen.  

3 Tabu search for automatic test generation 
In this section, we present how we have applied tabu search to software testing. The 

developed generator, TSGen, has the goal of covering all the branches of the program 

under test, i.e. to cover all the nodes of its control flow graph CFG (detailed in the 

previous section).  

TSGen generates tests (partial solutions) and executes them as input for the program 

under test. A test x  is formed by a vector (or tuple) of given values (v1, v2, …, vn) for 

the input variables (x1, x2,..., xn) of the program under test. The set of values for a 

variable xi is determined by its type (integer, float or character). 

The general TSGen algorithm appears in Figure 3. 

TSGen generates tests based on the test that is the Current Solution (CS). Initially, the 

Current Solution is a random test, but, inside the loop (see Figure 3), TSGen selects it 

according to which subgoal node has to be covered. The subgoal node selection process 

will be explained in subsection 3.3. 

Using the Current Solution, TSGen generates a set of neighbouring test candidates (in a 

way that will be explained in subsection 3.4). When a test is generated, TSGen checks 

whether it is a tabu test. A test is tabu if it is stored in the TSGen memory. In short, 

TSGen has a memory formed by two tabu lists: the short-term tabu list (ST) and the 

long-term tabu list (LT), which will be detailed in subsection 3.5. If a generated test is 

not tabu, the instrumented program under test is executed to check which branches 

(nodes) it has covered and the cost (calculated as detailed in subsection 3.2) incurred by 

said test. However, if a generated test is tabu, it will be rejected. During the search 

process, the best solutions found are stored together with their costs in the CFG. Thus, 

when an executed test has a lower cost in a CFG node than the current cost stored in 

that node, that test is stored as the best solution for that node.  

The program under test could have unfeasible or very difficult branches to be covered. 

For this reason, TSGen includes a backtracking process that will be explained in 
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subsection 3.6. In the backtracking process, TSGen will reject the Current Solution and 

store it in its LT memory. As a result of the backtracking process, TSGen will 

regenerate the search to the subgoal node or will mark the subgoal node as unfeasible 

and start the search to reach a new non-covered subgoal node. 

3.1 Goal and final solution of TSGen  

The goal that TSGen has to achieve is that of generating the tests that obtain the 

maximum branch coverage for the program under test. This value is calculated as: 

100*100%
stalBrancheNumberOfTo

anchesfeasibleBrNumberOfUn
Max −=   (1) 

A branch is unfeasible if there is no test to cover it. Therefore, if there are no unfeasible 

branches, the maximum branch coverage will be 100%. However, the maximum branch 

coverage is unknown before testing the program. For this reason, we established the 

following as the stopping criterion for TSGen: when all the branches have been reached 

or when a maximum number of iterations (MAXIT) of TSGen has been surpassed. 

As the Final Solution of the problem of branch coverage, when it finishes, TSGen 

shows the final branch coverage achieved, the time consumed, the branches (if these 

exist) that have not been covered and each best test that is needed to reach the final 

branch coverage. 

3.2 Cost functions 

A cost function (or fitness function) measures how good a solution is in relation to 

achieving the search goal. The use of a good cost function is fundamental for the test 

generator to work correctly and its definition depends on how the search problem is 

addressed. 

Previous studies on the use of metaheuristic search techniques for automatic test 

generation employ only one cost function to measure the distance of a test to the goal. 

TSGen uses a new approach that consists in distinguishing two kinds of costs with 

different meanings: 

− The cost for a test x  when it does not reach a node nj but it does reach its parent 

node ni. This cost is used to intensify the search and is calculated by means of 

the cost function called fnj
ni( x ), as will be explained in subsection 3.2.1. 
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− The cost for a test x  when it reaches a node ni. This cost is used to diversify the 

search and is calculated by means of the cost function called fpni( x ) (parent 

cost), as will be explained in subsection 3.2.2. 

For each executed test x , TSGen calculates both costs (fnj
ni( x ) and fpni( x )). The best 

tests found are stored (together with their cost) in the CFG. Specifically, a CFG node ni 

stores the Best Known Solution for trying to reach its child node nj (BKSnj
ni) and the 

Best Solution that reaches ni (BSni). These best solutions are stored for all the CFG 

nodes with the exception of the root node, which does not store the BS since all tests 

reach it unconditionally, and the leaves nodes, which do not store the BKS since they 

have no child nodes. Figure 4 depicts an example of the best tests stored for a node ni 

that has two child nodes, nj and nk, in which Condni is the decision that has to be true to 

reach ni and Condnj
ni (or simply Condnj) and Condnk

ni (or simply Condnk) are the 

decisions that have to be true, respectively, to reach nj and nk from ni.  

During the search process, TSGen will frequently use BKSnsgoal
ni as the Current Solution 

to try to cover the subgoal node nsgoal. By means of this solution, the search will be 

intensified in a ‘good’ region. However, if this search is not successful (nsgoal is not 

covered in a number of iterations), TSGen will use BSni as the Current Solution in order 

to diversify the search towards unexplored regions. Anyway, when TSGen finds a best 

test for any node, it will be stored in the CFG carrying out, this way, a ‘parallel search’ 

for all the branches. 

3.2.1 Cost function fnj
ni( x ) 

The cost function fnj
ni( x ) is used to evaluate those tests which, although they reach the 

node ni, make the decision Condnj
ni false (and do not reach the node nj). The definition 

of fnj
ni( x ) is shown in Table 1 (the constant σ is used to avoid obtaining a zero cost in 

the inequality decisions). This definition is based on those of [6, 33]. It assigns a lower 

cost to those tests that are nearer to making the branch decision Condnj
ni (=Condnj) true, 

although, in contrast to these, our cost function will always calculate a value above zero. 

The goal of TSGen will be to minimize fnj
ni( x ). This minimization will involve an 

intensification of the search in a region of the input domain where there are good tests 

for trying to reach nj from ni. 
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3.2.2 Cost function fpni( x ) 

The cost function fpni( x ) is used to evaluate the cost of a test x  in each node ni reached 

by it (i.e. TSGen uses fpni( x ) when x makes Condni true). 

During the search process, the evaluation using this cost function will determine the test 

that is stored in the CFG as BSni. This solution is only used as the Current Solution 

when the solution BKSnsgoal
ni

 has failed as the Current Solution. The most probable 

reason for this situation is that the intensification that BKSnsgoal
ni produced in one region 

Rip of the domain of ni (Di), Di being a discontinuous domain, occurred in the erroneous 

region. Thus, if Di is defined as the union of some regions Di=Ri1∪Ri2∪...∪Riw and the 

domain of the subgoal node is Dnsgoal⊂Rim, it happens that the search is trying to reach 

Dnsgoal from a test that is in Rip, being p∈[1,w] and p≠m. When this occurs, it is in the 

interest of TSGen to escape from region Rip and to try and reach another neighbouring 

region that will diversify the search. The best tests will hence be those in region 

boundaries and fpni( x ) has accordingly been designed to assign them a lower cost.  

Table 2 displays the definition of fpni( x ). 

The BSni solutions will be used during a backtracking process to try to diversify the 

search in other regions. When TSGen finishes, the Final Solution is made up of tests 

that are stored as the BSni in the CFG. Since these tests are the ones found nearest to the 

domain boundaries, they will be more likely to find functional errors in the program 

under test than another set of coverage tests that are located more inside the domains. 

3.3 Selection of the subgoal node  

The subgoal node (nsgoal) is the CFG node that TSGen has to cover during an iteration. 

The final goal of TSGen is to cover all the nodes of the CFG. During the search, 

however, this goal is divided in subgoals bearing in mind that TSGen has to calculate a 

set of neighbouring candidates based on the CS. The idea here is that if one test in the 

CFG has covered the parent node but not the child node, a neighbouring test can be 

found that reaches the child node using the test that covers its parent node and which is 

the best one found up until then. This idea is based on the chaining approach [34], 

which consists in the concept that the parts of a program can be treated as subgoals, 

where each subgoal is solved using function minimization search techniques.  

In each iteration, TSGen selects as nsgoal the following CFG node without cover in 

preorder and whose parent has already been covered by a previously generated test. 
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Once nsgoal is selected, TSGen sets up the CS with the BKSnsgoal
nparent (or with the 

BSnparent if there is a backtracking process; see subsection 3.6). If the subgoal node has 

more than one parent node, the CS will be the BKSnsgoal
nparent with a lower cost (and not 

tabu). For example, let us suppose the CFG in Figure 5 and that there is not a 

backtracking process. The only nodes that have not yet been covered are 7 and 10. In 

this situation, TSGen selects node 7 as the subgoal node. As node 4 and node 6 are not 

decision nodes, node 7 has three parent decision nodes: 2, 3 and 5. Therefore, TSGen 

selects the BKS7
nparent with the lowest cost and not tabu as the CS. Assuming none of the 

BKS7
nparent is tabu, if f7

3(BKS7
3)<f7

2(BKS7
2)<f7

5(BKS7
5), then the CS will be BKS7

3. 

3.4 Generation of neighbouring candidates  

TSGen generates 4*n neighbouring candidates of the CS, n being the number of input 

variables of the program under test. In short, the technique consists in generating two 

near-neighbour tests and two neighbour tests further from the CS. That is to say, if the 

CS is (v1, v2, …,vn), TSGen maintains the same values for all vk that satisfy k≠i and 

generates four new values for vi: 

(i) vk’= vk + s(λ)   (ii) vk’’= vk – s(λ)  (iii) vk’’’= vk + s(µ)   (iv) vk
iV= vk  - s(µ) 

where s(λ) is a short step length and s(µ) is a long step length (λ and µ are TSGen 

parameters).  

The values for s(λ) and s(µ) are dependent on the type and range of the input variables 

and although  they are fixed respectively to the λ and µ values at the beginning of 

TSGen, they change during execution, taking into account the evaluation of the 

generated tests. In this way, it will be possible to carry out larger jumps when there are 

appropriate neighbours in the last iteration, and a very fine adjustment of the search 

when the neighbours do not improve the CS cost. In short, in each iteration, TSGen 

applies one of the following four cases for the automatic adjustment of the steps: 

1. Initializing: used to start the search in a new zone. 

2. Increasing: used to extend the search in distant zones of the CS.  

3. Centring: used to centre the search in a zone near to the CS.  

4. Intensifying: used to intensify the search in the nearest zone to the CS. In this 

case, for real variables, the step lengths can take values lower than 1. 
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Once the steps are applied, TSGen generates 4 new tests neighbours with the variations 

of each vk:  (i) (v1,v2,..,vk’,..,vn) (ii) (v1,v2,..,vk’’,..,vn)  (iii) (v1,v2,..,vk’’’,..,vn) (iv) 

(v1,v2,..,vk iV,..,vn) 

For each neighbour candidate Cv generated, TSGen verifies whether it is a tabu test, in 

which case it is rejected. If, on the other hand, Cv is not tabu, it is executed with the 

program under test and if it was the best test (BS and/or BKS solutions) for some of the 

reached nodes, it is stored together with its cost in the CFG. 

If some of the generated candidates cover nsgoal, TSGen will change the subgoal node in 

the next iteration. In any case, the processes of subgoal node selection, CS 

establishment and neighbour candidates generation will be repeated until TSGen 

verifies the stopping criterion. 

3.5 Tabu lists: the memory of TSGen 

One of the main characteristics of tabu search is that it has short-term memory and long-

term memory, along with their corresponding handling strategies. Tabu memory has to 

improve the effectiveness of the algorithm (percentage of branch coverage achieved) 

without too great a loss in efficiency. In TSGen, memory is used to store tabu tests, i.e. 

tests that, though generated, are not used as input for executing the program under test.  

In each iteration, TSGen’s goal is to achieve the global minimum *x , i.e. to generate a 

test *x  that achieves the subgoal node. Since the neighbouring candidates are generated 

on the basis of the CS, the CS is stored in the short-term memory tabu list so as to avoid 

repeating the same search for the same subgoal node. This memory is controlled by a 

tabu tenure (a TSGen parameter), whose value was determined by means of 

experimentation with different input ranges and different programs under test. The 

results obtained showed that a good value for the tabu tenure is in the interval [nb, 

5*nb], nb being the number of bits of the range for the input variables. Using a tabu 

tenure value within this interval, TSGen reaches a good final solution without 

consuming a long time for it. In general, we have observed in our experiments that the 

more complex (in terms of software coverage) the program under test is, the better the 

performance of TSGen when using a large value within the obtained interval. 

On the other hand, it could happen that the CS were a local minima, i.e. a test starting 

from which TSGen does not find a new CS in its explored neighbourhood during a 

specific number or iterations established by the MAXCS parameter (which will be 
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detailed in the next subsection). The tabu algorithm should preclude getting stuck in the 

local minima. The long-term memory tabu list is used for this. Those nx  that are local 

minima during the search process are stored in this list. Once a local minimum has been 

found, TSGen applies a backtracking process, as will be explained in the next 

subsection. An example of memory management is presented in our initial work [30]. 

The long-term memory will store few tests. For this reason, it is maintained throughout 

the search process without too much effect on TSGen’s performance. The short-term 

memory, on the other hand, could store a large number of tests and this could reduce 

TSGen’s performance. This, however, does not occur, since this memory is controlled 

by the tabu tenure and it is often deleted (when the subgoal node changes). Thus, the 

use of memory in TSGen is not critical.  

3.6 Backtracking process 

In order to prevent TSGen spending all its iterations in an attempt to cover unfeasible 

nodes and/or in trying to reach a child node (nsgoal) from a bad CS, TSGen applies a 

backtracking process that is determined by two parameters (the values of which may be 

dependent on the magnitude of the program to be tested): 

− MAXCS: Maximum number of iterations to try to reach a child node with the 

same CS. This avoids TSGen getting stuck when it tries to reach a node using a 

bad CS. 

− MAXNS: Maximum number of iterations that a node can be the nsgoal. This 

avoids TSGen getting stuck when it tries to reach an unfeasible node because 

when a node has been the subgoal node in MAXNS times, TSGen marks it as a 

possible unfeasible and it will never be the subgoal of the search. 

The backtracking process has three different stages: 

− Stage 1 is applied whenever MAXCS is reached and the MAXNS value for nsgoal 

has not been reached. In this stage, the current nsgoal is kept. TSGen tries to reach 

it using a new CS. This new CS will be BSnparent or another BKSnsgoal
notherparent

 in 

the case of nsgoal having more than one parent node (previously, the CS was 

BKSnsgoal
nparent). For example, Figure 5 depicted the selection of BKS7

3 as the 

CS. If the search using this CS does not reach node 7 in MAXCS iterations, 
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TSGen applies the first stage of backtracking, obtaining the situation shown in 

Figure 6. In this way, BKS7
3 is added to the LT tabu list and the new CS will be 

BKS7
2 (assuming that at that instant f7

2(BKS7
2)<f7

5(BKS7
5)). 

− Stage 2 is applied whenever Stage 1 had not success and the MAXNS value for 

nsgoal has not been reached. In this stage, the nsgoal is changed but TSGen does not 

mark it as unfeasible. The backtracking process spreads up in the CFG and 

TSGen tries to regenerate the solutions. If this backtracking process reaches the 

root node, TSGen will generate a new random test from which to continue the 

search.  

− Stage 3 is applied whenever TSGen reaches the MAXNS value for nsgoal. In this 

stage, the nsgoal is changed and TSGen marks it as unfeasible. 

TSGen’s memory is of great importance during the backtracking process, since it avoids 

reconsidering as better tests those that have already been tested and were rejected. 

4 Results 
This section analyzes the published data for other metaheuristic generators from 

previous work (subsection 4.1) and the results obtained by our tabu generator 

(subsection 4.2). 

4.1 Related work and results 

Table 3 summarizes the existing data from previous works that use metaheuristic 

techniques to automatically generate white-box tests using a structural adequacy 

criterion. Each row is labeled with the reference of the work for which its data are 

shown. The first column displays the metaheuristic technique used. The following five 

columns show the test adequacy criterion that is used for test generation. The structural 

criterion is subdivided in the control-flow criteria (in which the statement, branch, 

condition/decision (C/D) and loop coverage are detailed) and data-flow criteria. The 

columns ‘Type of input’ show the data type that accepts the generator for the input 

variables. The column ‘Explicit ranges for the input’ represents whether the range used 
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for the input variables in the experiments is explicitly stated in the published work. The 

following three columns summarize which results have been shown for the developed 

generator according to the data: number of tests generated, percentage of coverage 

(success) achieved and time consumed in reaching the percentage of coverage. 

Although many of the previous metaheuristic generators use the same technique (i.e. 

Genetic Algorithms), in none of them are the results obtained compared with those 

obtained by other metaheuristic generators. However, in many of them there is a 

comparison of the obtained results with those obtained by a random generator (because 

its algorithm is public). For this reason, the last three columns of the table indicate 

which results of the metaheuristic generator are compared with those of a random 

generator.  

Observing the adequacy criteria columns, it can be seen that the most widely used 

criteria have been the branch coverage criterion. The type of the input variables that a 

test generator accepts determines whether it could be used to test a certain program or 

not. In this respect, the metaheuristic generators developed before the year 2001 are 

only able to manage integer input variables.  

In order to carry out a comparison of the results of a new generator and the results of 

previous generators, it is necessary to know what ranges were used for the benchmark 

input variables in the experiments carried out for the previous generators. However, as 

can be observed in the column ‘Explicit ranges for the input’ in Table 3, there are five 

works in which the range is not explicit and one work [17] in which the range is only 

explicit for some of the used benchmarks. In those works in which the range is explicit, 

there is a tendency to use very small ranges. Thus, for example for a triangle classifier 

benchmark (in the specific version used in each study), the range used is ±20 in [9], 

±100 in [10], ±400 in [11], ±100 in [13], 12 bits in [16] and 8 bits for integers and 16 

bits for real values in [20]. This use of small ranges does not allow the behaviour of the 

generators to be observed in the testing of benchmarks with larger ranges, which are the 

most common in real programs.  

For those studies in which the range is explicit, it would be possible to carry out similar 

experiments for a new generator, but in order to establish a comparison of the results it 

is necessary to know, the percentage of coverage reached and the time consumed by the 

previous generators (together with a measure that allows the time to be extrapolated for 

any other machine). As can be seen in Table 3, the percentage of coverage achieved is a 
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result that is shown in all previous studies. The average of several runs is usually shown 

(with the exception of [18). On the other hand, however, the time consumed by the 

generator is not shown in most of the works. The majority of these do not show any data 

as regards time, or they just show a time interval in which all the experiments are 

included (for all the benchmarks), as for example in [17], which reports that the time for 

evolutionary tests varied for the different test objects between 160 and 254 seconds.  

The results obtained by an automatic test generator should be compared with the results 

obtained by other existing generators carrying out experiments under the same 

situations in both cases. However, as was previously stated, to do so it is necessary to 

know a great deal of data, which in most cases is incomplete. This lack of data would 

not exist if the generators to compare with were of public use, as the same experiments 

carried out for a new generator could always be repeated with these. The generators in 

Table 3 are not public, but there is a generator that can always be used to carry out 

comparisons: the random generator. Comparison with a random generator, as [35] 

proposed, allows the results of a new generator to be indirectly compared with those of 

previous generators. The time consumed in generating a test depends on the generator 

and the machine used. Since the time consumed by random testing can be obtained on 

any machine, showing the comparison of the time consumed by a developed generator 

with that of a random generator will allow the time of the developed generator to be 

extrapolated for any other machine. 

It can be observed in Table 3 that, with the exception of [16] and [20], all previous 

studies have carried out some kind of comparison with the results of a random 

generator. However, most of them only include a comparison related to the percentage 

of coverage reached and the number of tests generated. That is to say, these studies do 

not bear in mind that the time consumed in the generation of each random test is less 

than the time consumed in the generation of each non-random test and, for this reason, 

the comparison could be biased. The time comparison exists in only two previous 

studies [11, 13]. In both of these, the range used for the majority of the experiments is 

very small and besides, in [13], the comparison is carried out for only one benchmark. 

This means that there are scant data (and with small ranges) concerning the efficiency of 

these test generators in addition to the non-existence of data about the efficiency of the 

remaining previous generators. 
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In short, it is very difficult to compare the results of a developed generator with the 

results obtained by the generators of previous works. As mentioned above, there are 

several reasons: many of the works use only integer ranges for the input variables and 

therefore it is not possible to carry out a comparison for the real range; the range used 

for the input variables is not very clear; the results and comparisons published are not 

always complete; and often the time compared with a random generator is not reported, 

this data being necessary in order to compare the efficiency. The above reasons may be 

the motive why previous works do not compare their results with those of other 

previous metaheuristic generators. 

4.2 TSGen results 

The evaluation of an automatic test generator should be carried out using programs 

under test that present some difficulties for a test generator (for example: if the test 

adequacy criterion is the branch coverage criterion, the program should have some 

branches that are difficult to cover) in order for them to be considered benchmarks. As 

was shown in [18], the difficulty of covering a branch depends on how deeply 

conditional clauses are nested (nesting complexity) and the number of Boolean 

conditions in each decision (condition complexity). In addition to these factors, it is 

necessary to add the type of the operators that appear in the conditions and decisions, 

since it will be more difficult to cover a branch with the AND operator than a branch 

with the OR operator and it will be more difficult to make equality conditions true than 

inequality conditions. The question of which benchmarks have to be used for the 

evaluation of a structural automatic test generator is currently open to debate, this 

problem being one of the study themes of the SEMINAL project. Since a set of 

benchmarks defined as the standard set does not exist, the previous studies that have 

developed metaheuristic test generators have used one or several programs that include 

some of the previously detailed difficult factors. However, the code of these programs is 

not usually published (they are described only by their functionality and/or other 

characteristics, such as for example their cyclomatic complexity). The limitation thus 

arises that these programs cannot be used for the evaluation of a new test generator. 

In this section, we present the results obtained by TSGen in automatic test generation 

using the branch coverage criterion for a typical benchmark (the triangle classifier 

program) and two more complex programs (the line rectangle classifier and the number 
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of days between two dates), which have been specifically created with many branches 

that are difficult to reach. 

The obtained results were compared with those of a random generator due to the 

existing difficulties of establishing a time comparison with the results of other previous 

generators, as detailed in the previous subsection. However, contrary to what occurs in 

many previous works, our comparison includes the results of the time consumed by 

both generators (thus obtaining a reference of how efficient TSGen is). Moreover, in 

order to carry out a more complete study of the performance of TSGen, we compared 

the evolution of the results using different ranges for the input variables. Comparing this 

evolution with that of the random generator gives us an idea of how good our generator 

is in those situations in which a random generator begins to lose effectiveness (due to 

the range increase). 

For each input range, we carried out 100 experiments with the random and tabu 

generators. The results presented below are the average number of tests they need to 

generate in order to obtain a certain percentage of branch coverage and the average time 

consumed. Specifically, for each benchmark under test, a table is shown with the final 

results and a figure (such as, for example, Figure 8) that contains two graphs with the 

evolution of the cumulative percentage of branch coverage (vertical axis) for both 

generators. In the left-hand graphs, the horizontal axis represents the number of tests 

generated in logarithmic 10 scale, whereas in the right-hand graphs, the horizontal axis 

represents the time in logarithmic 10 scale.  

For TSGen, in all the experiments, the initial solution was chosen at random, the tabu 

tenure was fixed to the value 3*nb and the initial values used as parameters for the 

calculation of the steps were λ=1 and for µ a value that depends on the bits of the range 

used:  

µ 




>
≤

+ bits 16nb10    
bits 16nb10

2)8/(

8/

nb

nb

   nb being the number of bits of the range used. 

All experiments were carried out on a Pentium 4-3.4 Ghz with a RAM memory of 1 Gb. 

In all of these, the stop condition used was that of reaching 100% branch coverage or 

reaching 10,000,000 generated tests.  
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a) The triangle classifier program 

The programs most widely used as benchmarks are usually programs with few branches 

that present one or several of the difficulties to be covered for an automatic test 

generator. Among these programs, the most common is a program that classifies 

triangles on the basis of their three sides. 

Although the code of this program is not always available [18, 19], when it is shown it 

can be observed that different versions and implementations exist. For example, the 

classifier benchmark of [10, 11, 12, 13] classifies the triangle in no-triangle, isosceles, 

equilateral, scalene and right-angled, that of [17] differs from the previous one in that it 

only bears in mind one type of right-angled triangle (instead of the three possible) and 

the benchmarks of [16] and [18] do not classify the triangle as right-angled. Moreover, 

the benchmarks of [16] and [18] do the same, but their code is different. Also, in [20], 

there is a ‘strange’ version and implementation which does not distinguish the no-

triangle type. Therefore, there is neither a unique functionality nor code for the “triangle 

classifier program”. 

The “triangle classifier program” that is used by [2] has been used as a benchmark in 

this section. The control flow graph of this benchmark is displayed in Figure 7. It has 

three input variables (A, B, C), which may be integer or real and that represent a no-

triangle or a triangle that is isosceles, equilateral or scalene. 

In total, this program has 12 branches, with two decisions of AND type and its two 

corresponding OR decisions (the ‘else’ branches). The maximum nesting level is 5 and 

four of the deepest branches (nodes 5, 6, 9 and 11) have a condition of equality. These 

equalities increase the complexity for automatically finding the suitable tests, which 

will be even greater when A, B and C are of the real type. The more difficult branch to 

cover is the branch that classifies the triangle as equilateral (node 6), since it has a 

nesting level value of 4 and is conditioned by two AND decisions and two equality 

decisions. 

The results obtained for this benchmark using integer and real input variables are 

summarized in Table 4. In this table, it can be appreciated that TSGen obtains the best 

results in all ranges: it only needs to use a short time to obtain full branch coverage, in 

contrast with the results of the random generator, which in most cases was not able to 

achieve 100% coverage.  For example, with an integer input range of 32 bits, TSGen 
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needs an average of 21.4 seconds to obtain full branch coverage. On the other hand, in 

298 seconds, the random generator achieved only 58.3% branch coverage. 

Figure 8 depicts the evolution of the number of tests generated and the time consumed 

for the different integer input ranges. In the left-hand graph, it can be observed that the 

evolution of the accumulated percentage of coverage for TSGen in relation to the 

number of tests generated is very similar for all ranges: the number of tests generated to 

reach a certain coverage does not exponentially increase with the range of the input 

variables. On the other hand, the evolution for the random generator is highly range 

dependent: it generates few tests to reach approximately 58% branch coverage (which 

corresponds to covering those easy branches that have no equality conditions). 

However, the number of tests that it needs to go beyond 58% is much greater when the 

range is increased from 8 to 16 and 32 bits. The right-hand graph depicts the efficiency 

for both generators. For a small range, such as the 8 bit range, TSGen is faster starting 

from around 92% coverage, but for larger ranges, TSGen is faster starting from a lower 

percentage of coverage, namely 75% for a 16 bit range and 58% for the 32 bit range. In 

short, both graphs shows that both the effectiveness and efficiency of TSGen are not 

very dependent of the range of input variables, reaching 100% branch coverage for all 

ranges without the need for an exponential increase either in the tests generated or in the 

time consumed. 

For real ranges (Figure 9), TSGen is again highly independent of the input range and 

reaches 100% coverage in around 1 second, whereas the random generator does not go 

beyond 58% coverage in more than 5 minutes.  

b) The line rectangle classifier 

The “Line rectangle classifier” program determines the position of a line in relation to a 

rectangle. It has eight real input variables, four of these (xr1, xr2, yr1, yr2) represent the 
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coordinates of a rectangle and the other four input variables (xl1, xl2, yl1, yl2) represent 

the coordinates of a line. There are four different outputs: 1- The line is completely 

inside the rectangle; 2- The line is completely outside the rectangle; 3- The line is 

partially covered by the rectangle; and 4- Error: The input values do not define a line 

and/or a rectangle. Besides, if the output is not erroneous, the program indicates 

whether the line is horizontal, vertical or inclined and, the side(s) of the rectangle that is 

(are) cut when the line is partially covered. To reach one of the three possible correct 

outputs, the program needs to check whether the line is horizontal, vertical or inclined 

and on the basis of this determine whether it intersects the rectangle or not. As can be 

observed in Figure 10, these checks add very difficult branches to be reached: with a 

huge nesting level (node 40 has a nesting complexity of 12) and nested inside AND, OR 

and/or equality decisions. In total, the number of branches of this program is 36.  

This program is different from that used in [17] named “Is_line_covered_by_rectangle” 

because, although its code (or control flow graph) is not shown, its reported features are 

24 branches and a maximum nesting level of 4 (in contrast with the value of 12 in our 

case).  

The final results obtained are summarized in Table 5. As for the “Triangle classifier”, 

TSGen obtains the best results in all ranges: it only needs to use around 1 minute to 

obtain full branch coverage, in contrast with the results of the random generator, which 

did not go beyond 58.33% branch coverage in around 20 minutes. In short, the random 

generator does not reach the branches that are labeled in the control flow graph as nodes 

5, 6, 7, 8, 9, 10, 14, 15, 16, 17, 18, 19, 20, 21 and 40. These branches have a high 

nesting level and/or they are preceded by complex decisions. 

The evolution of both generators is depicted in the graphs in Figure 11. These show that 

the evolution of TSGen is practically independent of the range used for the input 

variables: the number of tests generated and the time consumed have similar values for 

all ranges in the same accumulated percentage of coverage.  

c) The number of days between two dates 

The ‘Number of days’ program calculates the number of days that there are between 

two input dates of the current century. It has six integer input variables: three 
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correspond to the initial date (day0, mon0, year0) and the other three to the final date 

(day1, mon1, year1). It has 86 branches and many of these are very complex. Initially, 

the first decision that the input dates have to make true is that the months must have a 

value between 1 and 12 and the years value must have a value between 2000 and 2100. 

Next, for those dates that make the first branch true, the program determines the 

maximum number of days for the input months and checks whether those values are 

within the month ranges. Besides, when the two dates are correct, the program checks 

whether the initial date is prior to the final date and interchanges them otherwise. Once 

there are two correctly ordered dates, the program counts the number of days between 

the dates taking into account whether the year is a leap year or not. All these restrictions 

mean that this program includes a lot of branches with equality conditions. Moreover, 

some of them use the remainder operator (%), which adds discontinuity to the decisions 

domains and therefore a greater difficulty in finding the tests that cover those branches.  

The nesting level is very high for the greater part of the branches and, in combination 

with the AND decisions, the equality conditions and the use of the remainder operator, 

make this program very appropriate, because of its difficulty, to evaluate the 

effectiveness and efficiency of an automatic test generator for the branch coverage 

criterion. The control flow graph of the program is shown in Figure 12. 

The results obtained are summarized in Table 6. The results show how TSGen obtains 

full branch coverage for all the ranges, while the random generator reaches only 1.16% 

branch coverage when the range is greater than 8 bits.  

The evolution of both generators can be observed in the graphs in Figure 13. For the 8 

bit range, TSGen always needs to generate fewer tests than the random generator (left-

hand graph) and it is faster from 12% branch coverage. When the range is increased (16 

and 32 bits), TSGen does not need to carry out an exponential increase for either the 

number of tests generated or the time spent. On the other hand, when the range is 

increased, the random generator is not capable of making the first decision (node 1) true 

and only reaches 1.16% branch coverage. 
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5 Summary and Conclusions 
This paper presents TSGen, an automatic generator of software tests for a given 

program. Although there are a great variety of real-world problems that have been 

solved by tabu search, no results of its application to software testing have been 

published by other authors yet. In this respect, this is the first work in which the 

metaheuristic technique tabu search has been used to solve the problem of automatic 

test generation. 

The representation carried out was designed to be effective and efficient: the ‘Current 

Solution’ is selected taking into account the chaining approach; the memory stores only 

the most significant tests; the number of neighbouring tests is dependent on the number 

of input variables; the values for the steps are dependent on the type and range of the 

input variables and are automatically adjusted during execution (taking into account the 

evaluation of the generated tests); and the cost function fnj
ni( x ) is capable of precisely 

measuring how far a test is in order to make a branch decision true. 

Furthermore, we have introduced a set of improvements with regard to the tabu search 

general scheme that increases the effectiveness and efficiency of TSGen even more: the 

best tests are stored in the control flow graph, carrying out a ‘parallel search’ for the 

other branches; the subgoal node is selected bearing in mind the current search 

situation; there is a backtracking process able to detect bad current solutions and 

unfeasible nodes; and another cost function (fpni( x )) is defined that diversifies the 

search when the intensification carried out with fnj
ni( x ) has not been successful. 

Furthermore, the representation carried out avoids TSGen getting stuck in the local 

minima (as could occur using Simulated Annealing when the number of local minima is 

larger and the cooling is not very slow). Besides, it does not use binary encoding, with 

the consequent saving in the consumed time that encoding/decoding would imply, as 

occurs in the majority of test generators based on Genetic Algorithms. 

TSGen was evaluated using benchmarks that have branches for which it is very difficult 

to find a test that reaches them because of the existence of several of the factors that 

influence the complexity of reaching a branch (high nesting complexity, high condition 

complexity, the use of equality and remainder operators in conditions and the use of 

AND operators in decisions). In spite of the existence of these difficulties, TSGen 

achieves 100% branch coverage for all the benchmarks and consumes a reasonable time 
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to do so. Moreover, as was shown in the results section, the performance of TSGen is 

highly independent with regard to the range of input variables: it reaches 100% 

coverage even for 32 bit ranges without the need for an exponential increment in the 

consumed time (or in the number of tests generated). 

The lack of published data does not allow a complete comparison with the results of 

other previous automatic generators to be carried out: generally all the data are not 

available and, besides, the range used for the input variables is usually too small to be 

considered significant for the evaluation of a test generator. To avoid these problems in 

future comparisons with TSGen, in this paper the TSGen results have been shown using 

large ranges (up to 32 bits) and the time consumed has been documented for the 

different experiments comparing it with that of a random generator, which will allow an 

extrapolation of its efficiency to any other machine. 
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Figure 2. Example of a CFG 
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Figure 3 - TSGen general algorithm 

 

 
Figure 4- Example of the best tests stored together with their cost for a CFG node ni 

 

 

begin 
Initialise Current Solution 
Calculate the cost of Current Solution  
Store Current Solution in CFG 
Add Current Solution to tabu list ST  
Select a subgoal node to be covered 
do 
     Calculate neighbourhood candidates 
     Calculate the cost of candidates: each non tabu candidate is executed 
     for each candidate do 
             if  (candidate cost in node n <CFG cost in node n) then  Store candidate in CFG   endif 
     endfor       
     if  (subgoal node not covered) then  Add Current Solution to tabu list ST 
     else    Delete tabu list ST 
     endif 
     Select a subgoal node to be covered 
     Select Current Solution using the CFG 
     if  (Current Solution is depleted) then 
            Add Current Solution to tabu list LT 
            Apply a backtracking process: new Current Solution and maybe new subgoal node 
     endif  
while (NOT all nodes covered AND number of iterations<MAXIT) 
end 
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Figure 5. Example of subgoal node and CS selection 

 

 
Figure 6. Backtracking process example: Stage 1 application when the subgoal node has 
several parent nodes 
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Figure 7. “Triangle classifier” control flow graph 
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Figure 8. Evolution of the number of tests generated and time for the “Triangle Classifier” 
program using integer input variables  
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Figure 9. Evolution of the number of tests generated and time for the “Triangle Classifier” 
program using real input variables 
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Figure 10. “Line Rectangle Classifier” control flow graph 
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Figure 11. Evolution of the number of tests generated and time for the “Line Rectangle Classifier” 
program  
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Figure 12. The “Number of days” control flow graph 
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Figure 13. Evolution of the number of tests generated and time for the ‘Number of days’ program 
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Tables 
Table 1. TSGen cost function fnj

ni( x ) 

Type operator Condnj
 ni  TSGen fnj

ni( x ) 

Relational with 
equality 

x=y 
x=y 
x=y 

|x-y| 

Relational 
without equality 

x?y 
x<y 
x>y 

|x-y|+σ    being σ˜ 0 and σ>0 

AND  c1∧c2∧...∧cn // the cost is the sum of the costs of all the false clauses 

  ∑
FALSEc

ci
ni

nj
i

xf )(  

OR  c1∨c2∨...∨cn // the cost is the minimum of the costs of all the false clauses  
Minimum(fnj

ni( x )ci) ∀ci=FALSE 
NOT  ¬c Negation is propagated using the law of De Morgan 

¬(c1∧c2) is  treated as ¬c1∨¬c2:  fnj
ni( x )=Minimum(fnj

ni( x )¬ci) 
∀ci=FALSE 

¬(c1∨ c2) is treated as ¬c1∧¬c2:  fnj
ni( x )= ∑ ¬

FALSEc
c

ni
nj

i

i
xf )(  

 

Table 2. TSGen cost function fpni( x ) 

Type 
operator 

Condni
  TSGen fpni( x ) 

Relational 
with equality 

x=y 
x=y 
x=y 

|x-y| 

Relational 
without 
equality 

x?y 
x<y 
x>y 

|x-y|-σ   being σ˜ 0 and σ>0 

AND  c1∧c2∧...∧cn Minimum(fp( x )ci) ∀ci=TRUE 

OR  c1∨c2∨...∨cn ∑
TRUEc

c
i

i
xfp )(  

NOT  ¬c Negation is propagated using the law of De Morgan 
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Table 3. Features of the results of previous works  

 

Adequacy criterion: Structural (coverage) Type of input Published Results  

Control-flow For the developed generator Includes comparison with a random 
generator respect to  Technique 

State-
ment  Branch  C/D  Loop 

Data-
flow integer real 

Explicit 
ranges 
for the 
input Number of 

tests 
generated 

% coverage 
(or success) Time 

Number of 
tests 

generated 

% coverage 
(or success) Time 

  [9]   (1995) GA     x x  A x x  x x  

[10]   (1995) GA  x    x  A x x  x x  

[11]   (1996) GA x x  x  x  A x x x x x x 

[12]   (1996) GA  x  x  x   x x N x x  

[22]   (1998) SA  x    x    x N  x  

[13]   (1998) GA  x    x  A x x x** x x x** 

[14]   (1999) GA x x    x   x x  x x  

[16]   (2001) GA     x x x A x x     

[17]   (2001) GA x x    x x S x x N x x  

[18]   (2001) GA   x   x x  S* x* N S* x*  

[19]   (2002) GA     x x x  x x N x x  

[20]   (2004) GA, SA     x x x A x x x**    
* not mean results 
**only for one of the used benchmarks 
Technique: GA-Genetic Algorithms, SA-Simulated Annealing 
Explicit ranges for the input: A- for All the benchmarks, S- for Some benchmarks 
Time for the developed technique: N- Not detailed: only reported an interval time in which are included all experiments  
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Table 4. Final results for the “Triangle Classifier” program  

TSGen Random 
 

Tests % cov. Time (sec.) Tests % cov. Time (sec.) 

Range         
8 bits 217 100 0.111 170,315 100 5 

Range       
16 bits 738 100 0.442 10,000,000 91.67 298 

Range       
32 bits 19552 100 21.425 10,000,000 58.33 298 

       

Range 
±100.000 

697 100 0.395 10,000,000 58.33 330 

Range 
±1000.000 

819 100 0.475 10,000,000 58.33 330 

Range 
±100000.000 

1435 100 0.864 10,000,000 58.33 330 

Table 5. Final results for the “Line Rectangle Classifier” program 

TSGen Random 
 

Tests % cov. Time (sec.) Tests % cov. Time (sec.) 

Range 
±100.000 

29191 100 53,86 10,000,000 58.33 1210 

Range 
±1000.000 

24606 100 43,91 10,000,000 58.33 1212 

Range 
±100000.000 

33303 100 60,69 10,000,000 58.33 1210 

Table 6. Final results for the “Number of days” program  

TSGen Random 
 

Tests % cov. Time (sec.) Tests % cov. Time (sec.) 

Range         
8 bits 25765 100 84.27 10,000,000 83.60 742 

Range       
16 bits 28081 100 96.63 10,000,000 1.16 686 

Range       
32 bits 65317 100 251.38 10,000,000 1.16 686 

 




