
 1

A tabu search algorithm for structural Software Testing
Eugenia Díaz* (1), Javier Tuya(1), Raquel Blanco(1), José Javier Dolado(2)
(1) Department of Computer Science, University of Oviedo
Campus de Viesques, Gijón, Asturias, 33204 Spain
(2) Departmet of Computer Science and Languages
University of the Basque Country, Spain

Abstract

This paper presents a tabu search metaheuristic algorithm for the automatic generation

of structural software tests. It is a novel work since tabu search is applied to the

automation of the test generation task, whereas previous works have used other

techniques such as genetic algorithms. The developed test generator has a cost function

for intensifying the search and another for diversifying the search that is used when the

intensification is not successful. It also combines the use of memory with a

backtracking process to avoid getting stuck in local minima. Evaluation of the generator

was performed using complex programs under test and large ranges for input variables.

Results show that the developed generator is both effective and efficient.

Keywords: Software testing; Structural testing; Automatic test generation; Tabu search

1 Introduction
The application of Metaheuristic Algorithms to solve problems in Software Engineering

was proposed by the SEMINAL project (Software Engineering using Metaheuristic

INnovative Algorithms) and is detailed in [1]. One of these applications is the test

generation process of Software Testing.

Software Testing consists of a set of activities conducted with the aim of finding errors

in software. As the number of test cases1 needed for fully testing a software program is

a huge number [2], in practice, it is impossible to achieve a fully tested program. It has

been estimated that software testing entails 50 percent of software development [3].

This cost can be significantly reduced with the automation of test generation. Among

the different approaches used for the automation of this process, we may distinguish

* Corresponding author: madiaz@uniovi.es

 Ph: +34 985 182497

 FAX: +34 985 181986
1 A test case is an ordered pair of test inputs and expected outputs (oracle).

tuya
Cuadro de texto
Final preprint version published in Computers and Operations Research. 35(10) 3049-3392, 2008.
© Elsevier, doi: 10.1016/j.cor.2007.01.009

 2

between specification-oriented approaches (or black-box testing), which generate the

test cases from the program specification, and implementation-oriented approaches (or

white-box testing), which generate the test cases from the code of the program under

test.

Test cases have to be generated according to the test adequacy criterion [4], which ‘is

considered to be a stopping rule that determines whether sufficient testing has been

done … and provides measurements of test quality’. Some of these criteria are the

structural criteria that specify testing requirements in terms of the coverage of a

particular set of elements of the program under test or its specification. Previous work

on automatic test generation for structural criteria can be divided into static methods (as

for example [5]) that generate the tests2 without executing the program under test, and

dynamic methods (as for example [6]) that carry out a direct search of the tests through

the execution of the program, which has to be previously instrumented. The most recent

dynamic methods for automatic test generation use the metaheuristic search techniques

called genetic algorithms and simulated annealing where the testing problem is treated

as a search or optimization problem. One of these metaheuristics, genetic algorithms

[7], is the most widely used technique.

The first work that suggested the use of genetic algorithms for the structural test

generation was [8] in 1992. However, it is from 1995 on when genetic algorithms began

to be used frequently for the automatic generation of tests. [9] used genetic algorithms

for the search of tests that cover a path or a set of paths of the program under test (data-

flow criteria), and a genetic generator was developed in [10] for the branch coverage

criterion. Subsequently, the doctoral thesis [11] investigated how the variations in the

genetic parameters (mutations, crossover, fitness function...) influence the results

obtained by a genetic generator for achieving branch coverage and loop coverage. Some

of these results are also published in [12] and [13]. On the other hand, TGen [14] was

developed for the statement coverage and branch coverage criteria. TGen introduces the

variation of using the control dependence graph [15] instead of the control flow graph

(which will be detailed in Section 2) used by other genetic generators. [16] proposed a

fitness function called SIMILARITY that was used by their system to search tests that

cover a selected path of the program under test.

2 We refer to test as a set of test inputs of a test case since, in structural testing, the goal is concentrated in
the generation of test inputs (this way, the oracle problem is not considered).

 3

The aforementioned works use binary encoding limited to a representation that allows

only integer types, in contrast with [17, 18, 19, 20], which are capable of generating

tests for programs with input variables of a real type. Wegener et al. [17] showed an

evolutionary test environment that performs automatic test data generation for most

structural test methods, presenting its results for the branch coverage criterion. Michael

et al. [18] reported a system, called GADGET, for the condition/decision coverage

criterion. GADGET has two different implementations: standard [7], which uses a

binary representation, and differential [21], which allows a representation defined by the

user to be used. In the work [19] genetic algorithms are used for the search of tests that

reach a goal path. This generator accepts real data type but its representation is binary.

As in the aforementioned paper, the system described in [20] also has the goal of path

testing and uses binary encoding.

However, there are few studies based on simulated annealing for automatic test

generation with structural criteria. On the one hand, there is the work presented in [22]

for the branch coverage criterion and on the other the work presented in [20], which,

like their genetic generator, is intended for path testing.

Another metaheuristic technique that can be applied to automatic test generation is tabu

search [23]. There are a great variety of real-world problems that can be solved by tabu

search, such as job shop scheduling [24], multiprocessor task scheduling [25], vehicle

routing problems [26], graph coloring [27] and many other combinatorial optimization

problems [28, 29]. However, although tabu search is cited in several studies in software

testing, such as [18] or [22], no data have been reported with the exception of our initial

study [30]. This is the reason why we detail in this paper how tabu search can be

applied to the automatic generation of tests to obtain branch coverage and present the

results obtained.

In relation to our initial work [30], this paper includes important novelties as for

example the use of two cost functions (one is used to intensify the search and the other

to diversify the search), the improvement of the process for the generation of neighbour

candidates (which includes four cases for the automatic adjustment of the steps) and a

more elaborated backtracking process that incorporates three stages of performance.

Moreover, in this paper we present the results of the application of Tabu Search to test

generation together with a summary of previous related work with other metaheuristic

techniques and a discussion about their published results.

 4

The rest of the paper is organized as follows. The next section describes the problem of

the automatic generation of tests for the structural branch coverage criterion and the tool

scheme that we have developed. Section 3 details our test generator based in Tabu

Search. In Section 4 the results published in previous works are summarized and our

results are presented and analysed. Finally, Section 5 includes the conclusions of this

paper.

2 Problem overview
The combination of program-oriented approaches with structural criteria produces

testing methods called Program-Based Structural Testing methods. For these methods,

most adequacy criteria are based on the flow graph model of the program structure. A

flow graph (or control flow graph) [31] is a directed graph G=(N, E, s, e), where N is a

set of nodes, E is a set of directed edges (arcs) aij between nodes of the form (ni,nj),

being ni,nj∈N (E ⊆ N x N), s (s∈N) is the initial node and e (e∈N) is the final node of

the graph. Each node n∈N represents a linear sequence of computations for the program

under test. Each arc aij represents the transfer of the execution control of the program

from the node ni to the node nj when the associated arc condition (or decision3) is true.

The branch coverage criterion (also known as the decision coverage criterion) requires

all control transfers (decisions) to be exercised during testing. The percentage of

decisions executed is a measurement of test adequacy. Thus, for the branch coverage

criterion, an automatic test generator is totally effective if it generates a set of test inputs

T that covers all feasible decisions. Moreover, the automatic generation of T must be

carried out consuming a reasonable time (efficiency), since the automatic test generation

is carried out in order to reduce the manual time taken up by this task, thus reducing the

final cost in the testing process.

Tabu search, on the other hand, is a metaheuristic search technique based on the use of

historical information about a neighbourhood search aimed at helping the search to

overcome local optima. The general algorithm of tabu search is based on that of the next

k neighbours while maintaining memory that avoids repeating the search in the same

area (tabu) of the solution space. The details about tabu search can be consulted in [23,

29, 32].

3 A decision can be formed by a simple condition or composed of several conditions

 5

The application of tabu search to automatic test generation requires the creation of an

automatic generator in which the problem of test generation must be represented in

terms of tabu search elements (solutions, cost function and many other elements). In this

respect, we have developed a test generator based on tabu search, called TSGen (Tabu

Search Generator), that uses the general scheme of tabu search to generate a set of

coverage tests and which has several additional elements (as for example a backtracking

process) for improving its results even further. TSGen will be detailed in the next

section.

Like dynamic test generators, TSGen generates the tests from an instrumented version

of the program under test. As manual program instrumentation is a heavily time-

consuming task and may introduce errors with the consequent errors in test generation,

we have created a tool that automatically carries out the entire process related to test

generation and in which TSGen is integrated. The scheme of this tool appears in Figure

1.

Our tool uses the C/C++ source code of the program under test and automatically

generates the tests needed to achieve branch coverage. To do so, it has three modules:

• A parser/control flow graph generator that creates the needed control flow graph

(called CFG) from the source code under test.

• A parser/instrumenter that creates the instrumented source code from the CFG

and the source code under test.

• TSGen, which generates tests and obtains the results from the instrumented

source code and the CFG.

The CFG stores which branches have been covered together with a great deal of other

pertinent information, such as for example the best solutions found. In our CFG, each

program branch is represented by a node that stores the branch decision (among many

other data). The program loops are treated as branches and represented as nodes that

store the loop decisions. The nodes representing decisions are the CFG decision nodes.

The CFG also has a root node (initial node) and non-decision nodes which represent

pieces of unconditional code. For instance, Figure 2 depicts a simple example of a

program and its corresponding CFG. It has seven nodes: the root node (node 0), two

non-decision nodes (node 4 and 6) and four decision nodes (nodes 1, 2, 3 and 5) for

which TSGen has to find the tests that cover them.

 6

Furthermore, although branch coverage is treated in this paper, the modularity of our

tool allows other coverage criteria to be used without carrying out too many changes. In

this respect, we have also implemented condition/decision coverage by modifying the

parser modules to divide the decisions in conditions and without changes in TSGen.

3 Tabu search for automatic test generation
In this section, we present how we have applied tabu search to software testing. The

developed generator, TSGen, has the goal of covering all the branches of the program

under test, i.e. to cover all the nodes of its control flow graph CFG (detailed in the

previous section).

TSGen generates tests (partial solutions) and executes them as input for the program

under test. A test x is formed by a vector (or tuple) of given values (v1, v2, …, vn) for

the input variables (x1, x2,..., xn) of the program under test. The set of values for a

variable xi is determined by its type (integer, float or character).

The general TSGen algorithm appears in Figure 3.

TSGen generates tests based on the test that is the Current Solution (CS). Initially, the

Current Solution is a random test, but, inside the loop (see Figure 3), TSGen selects it

according to which subgoal node has to be covered. The subgoal node selection process

will be explained in subsection 3.3.

Using the Current Solution, TSGen generates a set of neighbouring test candidates (in a

way that will be explained in subsection 3.4). When a test is generated, TSGen checks

whether it is a tabu test. A test is tabu if it is stored in the TSGen memory. In short,

TSGen has a memory formed by two tabu lists: the short-term tabu list (ST) and the

long-term tabu list (LT), which will be detailed in subsection 3.5. If a generated test is

not tabu, the instrumented program under test is executed to check which branches

(nodes) it has covered and the cost (calculated as detailed in subsection 3.2) incurred by

said test. However, if a generated test is tabu, it will be rejected. During the search

process, the best solutions found are stored together with their costs in the CFG. Thus,

when an executed test has a lower cost in a CFG node than the current cost stored in

that node, that test is stored as the best solution for that node.

The program under test could have unfeasible or very difficult branches to be covered.

For this reason, TSGen includes a backtracking process that will be explained in

 7

subsection 3.6. In the backtracking process, TSGen will reject the Current Solution and

store it in its LT memory. As a result of the backtracking process, TSGen will

regenerate the search to the subgoal node or will mark the subgoal node as unfeasible

and start the search to reach a new non-covered subgoal node.

3.1 Goal and final solution of TSGen

The goal that TSGen has to achieve is that of generating the tests that obtain the

maximum branch coverage for the program under test. This value is calculated as:

100*100%
stalBrancheNumberOfTo

anchesfeasibleBrNumberOfUn
Max −= (1)

A branch is unfeasible if there is no test to cover it. Therefore, if there are no unfeasible

branches, the maximum branch coverage will be 100%. However, the maximum branch

coverage is unknown before testing the program. For this reason, we established the

following as the stopping criterion for TSGen: when all the branches have been reached

or when a maximum number of iterations (MAXIT) of TSGen has been surpassed.

As the Final Solution of the problem of branch coverage, when it finishes, TSGen

shows the final branch coverage achieved, the time consumed, the branches (if these

exist) that have not been covered and each best test that is needed to reach the final

branch coverage.

3.2 Cost functions

A cost function (or fitness function) measures how good a solution is in relation to

achieving the search goal. The use of a good cost function is fundamental for the test

generator to work correctly and its definition depends on how the search problem is

addressed.

Previous studies on the use of metaheuristic search techniques for automatic test

generation employ only one cost function to measure the distance of a test to the goal.

TSGen uses a new approach that consists in distinguishing two kinds of costs with

different meanings:

− The cost for a test x when it does not reach a node nj but it does reach its parent

node ni. This cost is used to intensify the search and is calculated by means of

the cost function called fnj
ni(x), as will be explained in subsection 3.2.1.

 8

− The cost for a test x when it reaches a node ni. This cost is used to diversify the

search and is calculated by means of the cost function called fpni(x) (parent

cost), as will be explained in subsection 3.2.2.

For each executed test x , TSGen calculates both costs (fnj
ni(x) and fpni(x)). The best

tests found are stored (together with their cost) in the CFG. Specifically, a CFG node ni

stores the Best Known Solution for trying to reach its child node nj (BKSnj
ni) and the

Best Solution that reaches ni (BSni). These best solutions are stored for all the CFG

nodes with the exception of the root node, which does not store the BS since all tests

reach it unconditionally, and the leaves nodes, which do not store the BKS since they

have no child nodes. Figure 4 depicts an example of the best tests stored for a node ni

that has two child nodes, nj and nk, in which Condni is the decision that has to be true to

reach ni and Condnj
ni (or simply Condnj) and Condnk

ni (or simply Condnk) are the

decisions that have to be true, respectively, to reach nj and nk from ni.

During the search process, TSGen will frequently use BKSnsgoal
ni as the Current Solution

to try to cover the subgoal node nsgoal. By means of this solution, the search will be

intensified in a ‘good’ region. However, if this search is not successful (nsgoal is not

covered in a number of iterations), TSGen will use BSni as the Current Solution in order

to diversify the search towards unexplored regions. Anyway, when TSGen finds a best

test for any node, it will be stored in the CFG carrying out, this way, a ‘parallel search’

for all the branches.

3.2.1 Cost function fnj
ni(x)

The cost function fnj
ni(x) is used to evaluate those tests which, although they reach the

node ni, make the decision Condnj
ni false (and do not reach the node nj). The definition

of fnj
ni(x) is shown in Table 1 (the constant σ is used to avoid obtaining a zero cost in

the inequality decisions). This definition is based on those of [6, 33]. It assigns a lower

cost to those tests that are nearer to making the branch decision Condnj
ni (=Condnj) true,

although, in contrast to these, our cost function will always calculate a value above zero.

The goal of TSGen will be to minimize fnj
ni(x). This minimization will involve an

intensification of the search in a region of the input domain where there are good tests

for trying to reach nj from ni.

 9

3.2.2 Cost function fpni(x)

The cost function fpni(x) is used to evaluate the cost of a test x in each node ni reached

by it (i.e. TSGen uses fpni(x) when x makes Condni true).

During the search process, the evaluation using this cost function will determine the test

that is stored in the CFG as BSni. This solution is only used as the Current Solution

when the solution BKSnsgoal
ni

 has failed as the Current Solution. The most probable

reason for this situation is that the intensification that BKSnsgoal
ni produced in one region

Rip of the domain of ni (Di), Di being a discontinuous domain, occurred in the erroneous

region. Thus, if Di is defined as the union of some regions Di=Ri1∪Ri2∪...∪Riw and the

domain of the subgoal node is Dnsgoal⊂Rim, it happens that the search is trying to reach

Dnsgoal from a test that is in Rip, being p∈[1,w] and p≠m. When this occurs, it is in the

interest of TSGen to escape from region Rip and to try and reach another neighbouring

region that will diversify the search. The best tests will hence be those in region

boundaries and fpni(x) has accordingly been designed to assign them a lower cost.

Table 2 displays the definition of fpni(x).

The BSni solutions will be used during a backtracking process to try to diversify the

search in other regions. When TSGen finishes, the Final Solution is made up of tests

that are stored as the BSni in the CFG. Since these tests are the ones found nearest to the

domain boundaries, they will be more likely to find functional errors in the program

under test than another set of coverage tests that are located more inside the domains.

3.3 Selection of the subgoal node

The subgoal node (nsgoal) is the CFG node that TSGen has to cover during an iteration.

The final goal of TSGen is to cover all the nodes of the CFG. During the search,

however, this goal is divided in subgoals bearing in mind that TSGen has to calculate a

set of neighbouring candidates based on the CS. The idea here is that if one test in the

CFG has covered the parent node but not the child node, a neighbouring test can be

found that reaches the child node using the test that covers its parent node and which is

the best one found up until then. This idea is based on the chaining approach [34],

which consists in the concept that the parts of a program can be treated as subgoals,

where each subgoal is solved using function minimization search techniques.

In each iteration, TSGen selects as nsgoal the following CFG node without cover in

preorder and whose parent has already been covered by a previously generated test.

 10

Once nsgoal is selected, TSGen sets up the CS with the BKSnsgoal
nparent (or with the

BSnparent if there is a backtracking process; see subsection 3.6). If the subgoal node has

more than one parent node, the CS will be the BKSnsgoal
nparent with a lower cost (and not

tabu). For example, let us suppose the CFG in Figure 5 and that there is not a

backtracking process. The only nodes that have not yet been covered are 7 and 10. In

this situation, TSGen selects node 7 as the subgoal node. As node 4 and node 6 are not

decision nodes, node 7 has three parent decision nodes: 2, 3 and 5. Therefore, TSGen

selects the BKS7
nparent with the lowest cost and not tabu as the CS. Assuming none of the

BKS7
nparent is tabu, if f7

3(BKS7
3)<f7

2(BKS7
2)<f7

5(BKS7
5), then the CS will be BKS7

3.

3.4 Generation of neighbouring candidates

TSGen generates 4*n neighbouring candidates of the CS, n being the number of input

variables of the program under test. In short, the technique consists in generating two

near-neighbour tests and two neighbour tests further from the CS. That is to say, if the

CS is (v1, v2, …,vn), TSGen maintains the same values for all vk that satisfy k≠i and

generates four new values for vi:

(i) vk’= vk + s(λ) (ii) vk’’= vk – s(λ) (iii) vk’’’= vk + s(µ) (iv) vk
iV= vk - s(µ)

where s(λ) is a short step length and s(µ) is a long step length (λ and µ are TSGen

parameters).

The values for s(λ) and s(µ) are dependent on the type and range of the input variables

and although they are fixed respectively to the λ and µ values at the beginning of

TSGen, they change during execution, taking into account the evaluation of the

generated tests. In this way, it will be possible to carry out larger jumps when there are

appropriate neighbours in the last iteration, and a very fine adjustment of the search

when the neighbours do not improve the CS cost. In short, in each iteration, TSGen

applies one of the following four cases for the automatic adjustment of the steps:

1. Initializing: used to start the search in a new zone.

2. Increasing: used to extend the search in distant zones of the CS.

3. Centring: used to centre the search in a zone near to the CS.

4. Intensifying: used to intensify the search in the nearest zone to the CS. In this

case, for real variables, the step lengths can take values lower than 1.

 11

Once the steps are applied, TSGen generates 4 new tests neighbours with the variations

of each vk: (i) (v1,v2,..,vk’,..,vn) (ii) (v1,v2,..,vk’’,..,vn) (iii) (v1,v2,..,vk’’’,..,vn) (iv)

(v1,v2,..,vk iV,..,vn)

For each neighbour candidate Cv generated, TSGen verifies whether it is a tabu test, in

which case it is rejected. If, on the other hand, Cv is not tabu, it is executed with the

program under test and if it was the best test (BS and/or BKS solutions) for some of the

reached nodes, it is stored together with its cost in the CFG.

If some of the generated candidates cover nsgoal, TSGen will change the subgoal node in

the next iteration. In any case, the processes of subgoal node selection, CS

establishment and neighbour candidates generation will be repeated until TSGen

verifies the stopping criterion.

3.5 Tabu lists: the memory of TSGen

One of the main characteristics of tabu search is that it has short-term memory and long-

term memory, along with their corresponding handling strategies. Tabu memory has to

improve the effectiveness of the algorithm (percentage of branch coverage achieved)

without too great a loss in efficiency. In TSGen, memory is used to store tabu tests, i.e.

tests that, though generated, are not used as input for executing the program under test.

In each iteration, TSGen’s goal is to achieve the global minimum *x , i.e. to generate a

test *x that achieves the subgoal node. Since the neighbouring candidates are generated

on the basis of the CS, the CS is stored in the short-term memory tabu list so as to avoid

repeating the same search for the same subgoal node. This memory is controlled by a

tabu tenure (a TSGen parameter), whose value was determined by means of

experimentation with different input ranges and different programs under test. The

results obtained showed that a good value for the tabu tenure is in the interval [nb,

5*nb], nb being the number of bits of the range for the input variables. Using a tabu

tenure value within this interval, TSGen reaches a good final solution without

consuming a long time for it. In general, we have observed in our experiments that the

more complex (in terms of software coverage) the program under test is, the better the

performance of TSGen when using a large value within the obtained interval.

On the other hand, it could happen that the CS were a local minima, i.e. a test starting

from which TSGen does not find a new CS in its explored neighbourhood during a

specific number or iterations established by the MAXCS parameter (which will be

 12

detailed in the next subsection). The tabu algorithm should preclude getting stuck in the

local minima. The long-term memory tabu list is used for this. Those nx that are local

minima during the search process are stored in this list. Once a local minimum has been

found, TSGen applies a backtracking process, as will be explained in the next

subsection. An example of memory management is presented in our initial work [30].

The long-term memory will store few tests. For this reason, it is maintained throughout

the search process without too much effect on TSGen’s performance. The short-term

memory, on the other hand, could store a large number of tests and this could reduce

TSGen’s performance. This, however, does not occur, since this memory is controlled

by the tabu tenure and it is often deleted (when the subgoal node changes). Thus, the

use of memory in TSGen is not critical.

3.6 Backtracking process

In order to prevent TSGen spending all its iterations in an attempt to cover unfeasible

nodes and/or in trying to reach a child node (nsgoal) from a bad CS, TSGen applies a

backtracking process that is determined by two parameters (the values of which may be

dependent on the magnitude of the program to be tested):

− MAXCS: Maximum number of iterations to try to reach a child node with the

same CS. This avoids TSGen getting stuck when it tries to reach a node using a

bad CS.

− MAXNS: Maximum number of iterations that a node can be the nsgoal. This

avoids TSGen getting stuck when it tries to reach an unfeasible node because

when a node has been the subgoal node in MAXNS times, TSGen marks it as a

possible unfeasible and it will never be the subgoal of the search.

The backtracking process has three different stages:

− Stage 1 is applied whenever MAXCS is reached and the MAXNS value for nsgoal

has not been reached. In this stage, the current nsgoal is kept. TSGen tries to reach

it using a new CS. This new CS will be BSnparent or another BKSnsgoal
notherparent

 in

the case of nsgoal having more than one parent node (previously, the CS was

BKSnsgoal
nparent). For example, Figure 5 depicted the selection of BKS7

3 as the

CS. If the search using this CS does not reach node 7 in MAXCS iterations,

 13

TSGen applies the first stage of backtracking, obtaining the situation shown in

Figure 6. In this way, BKS7
3 is added to the LT tabu list and the new CS will be

BKS7
2 (assuming that at that instant f7

2(BKS7
2)<f7

5(BKS7
5)).

− Stage 2 is applied whenever Stage 1 had not success and the MAXNS value for

nsgoal has not been reached. In this stage, the nsgoal is changed but TSGen does not

mark it as unfeasible. The backtracking process spreads up in the CFG and

TSGen tries to regenerate the solutions. If this backtracking process reaches the

root node, TSGen will generate a new random test from which to continue the

search.

− Stage 3 is applied whenever TSGen reaches the MAXNS value for nsgoal. In this

stage, the nsgoal is changed and TSGen marks it as unfeasible.

TSGen’s memory is of great importance during the backtracking process, since it avoids

reconsidering as better tests those that have already been tested and were rejected.

4 Results
This section analyzes the published data for other metaheuristic generators from

previous work (subsection 4.1) and the results obtained by our tabu generator

(subsection 4.2).

4.1 Related work and results

Table 3 summarizes the existing data from previous works that use metaheuristic

techniques to automatically generate white-box tests using a structural adequacy

criterion. Each row is labeled with the reference of the work for which its data are

shown. The first column displays the metaheuristic technique used. The following five

columns show the test adequacy criterion that is used for test generation. The structural

criterion is subdivided in the control-flow criteria (in which the statement, branch,

condition/decision (C/D) and loop coverage are detailed) and data-flow criteria. The

columns ‘Type of input’ show the data type that accepts the generator for the input

variables. The column ‘Explicit ranges for the input’ represents whether the range used

 14

for the input variables in the experiments is explicitly stated in the published work. The

following three columns summarize which results have been shown for the developed

generator according to the data: number of tests generated, percentage of coverage

(success) achieved and time consumed in reaching the percentage of coverage.

Although many of the previous metaheuristic generators use the same technique (i.e.

Genetic Algorithms), in none of them are the results obtained compared with those

obtained by other metaheuristic generators. However, in many of them there is a

comparison of the obtained results with those obtained by a random generator (because

its algorithm is public). For this reason, the last three columns of the table indicate

which results of the metaheuristic generator are compared with those of a random

generator.

Observing the adequacy criteria columns, it can be seen that the most widely used

criteria have been the branch coverage criterion. The type of the input variables that a

test generator accepts determines whether it could be used to test a certain program or

not. In this respect, the metaheuristic generators developed before the year 2001 are

only able to manage integer input variables.

In order to carry out a comparison of the results of a new generator and the results of

previous generators, it is necessary to know what ranges were used for the benchmark

input variables in the experiments carried out for the previous generators. However, as

can be observed in the column ‘Explicit ranges for the input’ in Table 3, there are five

works in which the range is not explicit and one work [17] in which the range is only

explicit for some of the used benchmarks. In those works in which the range is explicit,

there is a tendency to use very small ranges. Thus, for example for a triangle classifier

benchmark (in the specific version used in each study), the range used is ±20 in [9],

±100 in [10], ±400 in [11], ±100 in [13], 12 bits in [16] and 8 bits for integers and 16

bits for real values in [20]. This use of small ranges does not allow the behaviour of the

generators to be observed in the testing of benchmarks with larger ranges, which are the

most common in real programs.

For those studies in which the range is explicit, it would be possible to carry out similar

experiments for a new generator, but in order to establish a comparison of the results it

is necessary to know, the percentage of coverage reached and the time consumed by the

previous generators (together with a measure that allows the time to be extrapolated for

any other machine). As can be seen in Table 3, the percentage of coverage achieved is a

 15

result that is shown in all previous studies. The average of several runs is usually shown

(with the exception of [18). On the other hand, however, the time consumed by the

generator is not shown in most of the works. The majority of these do not show any data

as regards time, or they just show a time interval in which all the experiments are

included (for all the benchmarks), as for example in [17], which reports that the time for

evolutionary tests varied for the different test objects between 160 and 254 seconds.

The results obtained by an automatic test generator should be compared with the results

obtained by other existing generators carrying out experiments under the same

situations in both cases. However, as was previously stated, to do so it is necessary to

know a great deal of data, which in most cases is incomplete. This lack of data would

not exist if the generators to compare with were of public use, as the same experiments

carried out for a new generator could always be repeated with these. The generators in

Table 3 are not public, but there is a generator that can always be used to carry out

comparisons: the random generator. Comparison with a random generator, as [35]

proposed, allows the results of a new generator to be indirectly compared with those of

previous generators. The time consumed in generating a test depends on the generator

and the machine used. Since the time consumed by random testing can be obtained on

any machine, showing the comparison of the time consumed by a developed generator

with that of a random generator will allow the time of the developed generator to be

extrapolated for any other machine.

It can be observed in Table 3 that, with the exception of [16] and [20], all previous

studies have carried out some kind of comparison with the results of a random

generator. However, most of them only include a comparison related to the percentage

of coverage reached and the number of tests generated. That is to say, these studies do

not bear in mind that the time consumed in the generation of each random test is less

than the time consumed in the generation of each non-random test and, for this reason,

the comparison could be biased. The time comparison exists in only two previous

studies [11, 13]. In both of these, the range used for the majority of the experiments is

very small and besides, in [13], the comparison is carried out for only one benchmark.

This means that there are scant data (and with small ranges) concerning the efficiency of

these test generators in addition to the non-existence of data about the efficiency of the

remaining previous generators.

 16

In short, it is very difficult to compare the results of a developed generator with the

results obtained by the generators of previous works. As mentioned above, there are

several reasons: many of the works use only integer ranges for the input variables and

therefore it is not possible to carry out a comparison for the real range; the range used

for the input variables is not very clear; the results and comparisons published are not

always complete; and often the time compared with a random generator is not reported,

this data being necessary in order to compare the efficiency. The above reasons may be

the motive why previous works do not compare their results with those of other

previous metaheuristic generators.

4.2 TSGen results

The evaluation of an automatic test generator should be carried out using programs

under test that present some difficulties for a test generator (for example: if the test

adequacy criterion is the branch coverage criterion, the program should have some

branches that are difficult to cover) in order for them to be considered benchmarks. As

was shown in [18], the difficulty of covering a branch depends on how deeply

conditional clauses are nested (nesting complexity) and the number of Boolean

conditions in each decision (condition complexity). In addition to these factors, it is

necessary to add the type of the operators that appear in the conditions and decisions,

since it will be more difficult to cover a branch with the AND operator than a branch

with the OR operator and it will be more difficult to make equality conditions true than

inequality conditions. The question of which benchmarks have to be used for the

evaluation of a structural automatic test generator is currently open to debate, this

problem being one of the study themes of the SEMINAL project. Since a set of

benchmarks defined as the standard set does not exist, the previous studies that have

developed metaheuristic test generators have used one or several programs that include

some of the previously detailed difficult factors. However, the code of these programs is

not usually published (they are described only by their functionality and/or other

characteristics, such as for example their cyclomatic complexity). The limitation thus

arises that these programs cannot be used for the evaluation of a new test generator.

In this section, we present the results obtained by TSGen in automatic test generation

using the branch coverage criterion for a typical benchmark (the triangle classifier

program) and two more complex programs (the line rectangle classifier and the number

 17

of days between two dates), which have been specifically created with many branches

that are difficult to reach.

The obtained results were compared with those of a random generator due to the

existing difficulties of establishing a time comparison with the results of other previous

generators, as detailed in the previous subsection. However, contrary to what occurs in

many previous works, our comparison includes the results of the time consumed by

both generators (thus obtaining a reference of how efficient TSGen is). Moreover, in

order to carry out a more complete study of the performance of TSGen, we compared

the evolution of the results using different ranges for the input variables. Comparing this

evolution with that of the random generator gives us an idea of how good our generator

is in those situations in which a random generator begins to lose effectiveness (due to

the range increase).

For each input range, we carried out 100 experiments with the random and tabu

generators. The results presented below are the average number of tests they need to

generate in order to obtain a certain percentage of branch coverage and the average time

consumed. Specifically, for each benchmark under test, a table is shown with the final

results and a figure (such as, for example, Figure 8) that contains two graphs with the

evolution of the cumulative percentage of branch coverage (vertical axis) for both

generators. In the left-hand graphs, the horizontal axis represents the number of tests

generated in logarithmic 10 scale, whereas in the right-hand graphs, the horizontal axis

represents the time in logarithmic 10 scale.

For TSGen, in all the experiments, the initial solution was chosen at random, the tabu

tenure was fixed to the value 3*nb and the initial values used as parameters for the

calculation of the steps were λ=1 and for µ a value that depends on the bits of the range

used:

µ




>
≤

+ bits 16nb10
bits 16nb10

2)8/(

8/

nb

nb

 nb being the number of bits of the range used.

All experiments were carried out on a Pentium 4-3.4 Ghz with a RAM memory of 1 Gb.

In all of these, the stop condition used was that of reaching 100% branch coverage or

reaching 10,000,000 generated tests.

 18

a) The triangle classifier program

The programs most widely used as benchmarks are usually programs with few branches

that present one or several of the difficulties to be covered for an automatic test

generator. Among these programs, the most common is a program that classifies

triangles on the basis of their three sides.

Although the code of this program is not always available [18, 19], when it is shown it

can be observed that different versions and implementations exist. For example, the

classifier benchmark of [10, 11, 12, 13] classifies the triangle in no-triangle, isosceles,

equilateral, scalene and right-angled, that of [17] differs from the previous one in that it

only bears in mind one type of right-angled triangle (instead of the three possible) and

the benchmarks of [16] and [18] do not classify the triangle as right-angled. Moreover,

the benchmarks of [16] and [18] do the same, but their code is different. Also, in [20],

there is a ‘strange’ version and implementation which does not distinguish the no-

triangle type. Therefore, there is neither a unique functionality nor code for the “triangle

classifier program”.

The “triangle classifier program” that is used by [2] has been used as a benchmark in

this section. The control flow graph of this benchmark is displayed in Figure 7. It has

three input variables (A, B, C), which may be integer or real and that represent a no-

triangle or a triangle that is isosceles, equilateral or scalene.

In total, this program has 12 branches, with two decisions of AND type and its two

corresponding OR decisions (the ‘else’ branches). The maximum nesting level is 5 and

four of the deepest branches (nodes 5, 6, 9 and 11) have a condition of equality. These

equalities increase the complexity for automatically finding the suitable tests, which

will be even greater when A, B and C are of the real type. The more difficult branch to

cover is the branch that classifies the triangle as equilateral (node 6), since it has a

nesting level value of 4 and is conditioned by two AND decisions and two equality

decisions.

The results obtained for this benchmark using integer and real input variables are

summarized in Table 4. In this table, it can be appreciated that TSGen obtains the best

results in all ranges: it only needs to use a short time to obtain full branch coverage, in

contrast with the results of the random generator, which in most cases was not able to

achieve 100% coverage. For example, with an integer input range of 32 bits, TSGen

 19

needs an average of 21.4 seconds to obtain full branch coverage. On the other hand, in

298 seconds, the random generator achieved only 58.3% branch coverage.

Figure 8 depicts the evolution of the number of tests generated and the time consumed

for the different integer input ranges. In the left-hand graph, it can be observed that the

evolution of the accumulated percentage of coverage for TSGen in relation to the

number of tests generated is very similar for all ranges: the number of tests generated to

reach a certain coverage does not exponentially increase with the range of the input

variables. On the other hand, the evolution for the random generator is highly range

dependent: it generates few tests to reach approximately 58% branch coverage (which

corresponds to covering those easy branches that have no equality conditions).

However, the number of tests that it needs to go beyond 58% is much greater when the

range is increased from 8 to 16 and 32 bits. The right-hand graph depicts the efficiency

for both generators. For a small range, such as the 8 bit range, TSGen is faster starting

from around 92% coverage, but for larger ranges, TSGen is faster starting from a lower

percentage of coverage, namely 75% for a 16 bit range and 58% for the 32 bit range. In

short, both graphs shows that both the effectiveness and efficiency of TSGen are not

very dependent of the range of input variables, reaching 100% branch coverage for all

ranges without the need for an exponential increase either in the tests generated or in the

time consumed.

For real ranges (Figure 9), TSGen is again highly independent of the input range and

reaches 100% coverage in around 1 second, whereas the random generator does not go

beyond 58% coverage in more than 5 minutes.

b) The line rectangle classifier

The “Line rectangle classifier” program determines the position of a line in relation to a

rectangle. It has eight real input variables, four of these (xr1, xr2, yr1, yr2) represent the

 20

coordinates of a rectangle and the other four input variables (xl1, xl2, yl1, yl2) represent

the coordinates of a line. There are four different outputs: 1- The line is completely

inside the rectangle; 2- The line is completely outside the rectangle; 3- The line is

partially covered by the rectangle; and 4- Error: The input values do not define a line

and/or a rectangle. Besides, if the output is not erroneous, the program indicates

whether the line is horizontal, vertical or inclined and, the side(s) of the rectangle that is

(are) cut when the line is partially covered. To reach one of the three possible correct

outputs, the program needs to check whether the line is horizontal, vertical or inclined

and on the basis of this determine whether it intersects the rectangle or not. As can be

observed in Figure 10, these checks add very difficult branches to be reached: with a

huge nesting level (node 40 has a nesting complexity of 12) and nested inside AND, OR

and/or equality decisions. In total, the number of branches of this program is 36.

This program is different from that used in [17] named “Is_line_covered_by_rectangle”

because, although its code (or control flow graph) is not shown, its reported features are

24 branches and a maximum nesting level of 4 (in contrast with the value of 12 in our

case).

The final results obtained are summarized in Table 5. As for the “Triangle classifier”,

TSGen obtains the best results in all ranges: it only needs to use around 1 minute to

obtain full branch coverage, in contrast with the results of the random generator, which

did not go beyond 58.33% branch coverage in around 20 minutes. In short, the random

generator does not reach the branches that are labeled in the control flow graph as nodes

5, 6, 7, 8, 9, 10, 14, 15, 16, 17, 18, 19, 20, 21 and 40. These branches have a high

nesting level and/or they are preceded by complex decisions.

The evolution of both generators is depicted in the graphs in Figure 11. These show that

the evolution of TSGen is practically independent of the range used for the input

variables: the number of tests generated and the time consumed have similar values for

all ranges in the same accumulated percentage of coverage.

c) The number of days between two dates

The ‘Number of days’ program calculates the number of days that there are between

two input dates of the current century. It has six integer input variables: three

 21

correspond to the initial date (day0, mon0, year0) and the other three to the final date

(day1, mon1, year1). It has 86 branches and many of these are very complex. Initially,

the first decision that the input dates have to make true is that the months must have a

value between 1 and 12 and the years value must have a value between 2000 and 2100.

Next, for those dates that make the first branch true, the program determines the

maximum number of days for the input months and checks whether those values are

within the month ranges. Besides, when the two dates are correct, the program checks

whether the initial date is prior to the final date and interchanges them otherwise. Once

there are two correctly ordered dates, the program counts the number of days between

the dates taking into account whether the year is a leap year or not. All these restrictions

mean that this program includes a lot of branches with equality conditions. Moreover,

some of them use the remainder operator (%), which adds discontinuity to the decisions

domains and therefore a greater difficulty in finding the tests that cover those branches.

The nesting level is very high for the greater part of the branches and, in combination

with the AND decisions, the equality conditions and the use of the remainder operator,

make this program very appropriate, because of its difficulty, to evaluate the

effectiveness and efficiency of an automatic test generator for the branch coverage

criterion. The control flow graph of the program is shown in Figure 12.

The results obtained are summarized in Table 6. The results show how TSGen obtains

full branch coverage for all the ranges, while the random generator reaches only 1.16%

branch coverage when the range is greater than 8 bits.

The evolution of both generators can be observed in the graphs in Figure 13. For the 8

bit range, TSGen always needs to generate fewer tests than the random generator (left-

hand graph) and it is faster from 12% branch coverage. When the range is increased (16

and 32 bits), TSGen does not need to carry out an exponential increase for either the

number of tests generated or the time spent. On the other hand, when the range is

increased, the random generator is not capable of making the first decision (node 1) true

and only reaches 1.16% branch coverage.

 22

5 Summary and Conclusions
This paper presents TSGen, an automatic generator of software tests for a given

program. Although there are a great variety of real-world problems that have been

solved by tabu search, no results of its application to software testing have been

published by other authors yet. In this respect, this is the first work in which the

metaheuristic technique tabu search has been used to solve the problem of automatic

test generation.

The representation carried out was designed to be effective and efficient: the ‘Current

Solution’ is selected taking into account the chaining approach; the memory stores only

the most significant tests; the number of neighbouring tests is dependent on the number

of input variables; the values for the steps are dependent on the type and range of the

input variables and are automatically adjusted during execution (taking into account the

evaluation of the generated tests); and the cost function fnj
ni(x) is capable of precisely

measuring how far a test is in order to make a branch decision true.

Furthermore, we have introduced a set of improvements with regard to the tabu search

general scheme that increases the effectiveness and efficiency of TSGen even more: the

best tests are stored in the control flow graph, carrying out a ‘parallel search’ for the

other branches; the subgoal node is selected bearing in mind the current search

situation; there is a backtracking process able to detect bad current solutions and

unfeasible nodes; and another cost function (fpni(x)) is defined that diversifies the

search when the intensification carried out with fnj
ni(x) has not been successful.

Furthermore, the representation carried out avoids TSGen getting stuck in the local

minima (as could occur using Simulated Annealing when the number of local minima is

larger and the cooling is not very slow). Besides, it does not use binary encoding, with

the consequent saving in the consumed time that encoding/decoding would imply, as

occurs in the majority of test generators based on Genetic Algorithms.

TSGen was evaluated using benchmarks that have branches for which it is very difficult

to find a test that reaches them because of the existence of several of the factors that

influence the complexity of reaching a branch (high nesting complexity, high condition

complexity, the use of equality and remainder operators in conditions and the use of

AND operators in decisions). In spite of the existence of these difficulties, TSGen

achieves 100% branch coverage for all the benchmarks and consumes a reasonable time

 23

to do so. Moreover, as was shown in the results section, the performance of TSGen is

highly independent with regard to the range of input variables: it reaches 100%

coverage even for 32 bit ranges without the need for an exponential increment in the

consumed time (or in the number of tests generated).

The lack of published data does not allow a complete comparison with the results of

other previous automatic generators to be carried out: generally all the data are not

available and, besides, the range used for the input variables is usually too small to be

considered significant for the evaluation of a test generator. To avoid these problems in

future comparisons with TSGen, in this paper the TSGen results have been shown using

large ranges (up to 32 bits) and the time consumed has been documented for the

different experiments comparing it with that of a random generator, which will allow an

extrapolation of its efficiency to any other machine.

Acknowledgements
This work was funded by the Department of Science and Technology (Spain) under the National Program

for Research, Development and Innovation, projects TIN2004-06689-C03-02, TIN2004-06689-C03-

01 and TIN2005-24792-E.

References (in order of appearance)

1. Clarke J, Dolado J J, Harman M, Hierons R M, Jones B, Lumkin M, Mitchell B, Mancoridis S, Rees

K, Roper M, Shepperd M. Reformulating software engineering as a search problem. IEE Proceedings

- Software 2003;150(3): 161-75.

2. Myers G J. The Art of Software Testing. Ed. John Wiley & Sons, 1979.

3. Beizer B. Software Testing Techniques, 2nd. Ed. Van Nostrand Reinhold, 1990.

4. Zhu H, Hall P A V, May J H R. Software Unit Test Coverage and Adequacy. ACM Computing

Surveys, 1997;29(4): 366-427.

5. DeMillo R A, Offutt A J. Constraint-based automatic test data generation. IEEE Transactions on

Software Engineering, 1991;17(9): 900-10.

6. Korel B. Automated software test data generation. IEEE Transactions on Software Engineering,

1990;16(8): 870-79.

 24

7. Goldberg D. Genetic Algorithms in search, optimization, and machine learning. Addison-Wesley,

Reading, MA,1989.

8. Xanthakis S, Ellis C, Skourlas C, Gall A L, Katsikas S, Karapoulios K. Application of Genetic

Algorithms to Software Testing. 5th International Conference on Software Engineering, 1992. p.

625-36.

9. Watkins A L. The automatic generation of test data using genetic algorithms. 4th Software Quality

Conference, 1995; vol. 2:300-09.

10. Jones B, Sthamer H, Yang X, Eyres D. The automatic generation of software test data sets using

adaptive search techniques. 3rd International Conference on Software Quality Management, 1995;

vol. 2:435-44.

11. Sthamer H. The Automatic Generation of Software Test Data Using Genetic Algorithms. PhD

Thesis, University of Glamorgan, Pontyprid, Wales, Great Britain, April 1996.

12. Jones B, Sthamer H, Eyres D. Automatic Structural Testing Using Genetic Algorithms. Software

Engineering Journal, 1996;11(5): 299-306.

13. Jones B, Eyres D, Sthamer H. A strategy for using genetic algorithms to automate branch and fault-

based testing. Computer Journal,1998;41(2):98-107.

14. Pargas R, Harrold M J, Peck R. Test-data generation using genetic algorithms. Journal of Software

Testing, Verification and Reliability, 1999;9(4): 263-82.

15. Ferrante J, Ottenstein K J, Warren J D. The program dependence graph and its use in optimization.

ACM Transactions on Programming Languages and Systems, 1987;9(3): 319-49.

16. Lin J-C, Yeh P-L. Automatic test data generation for path testing using GAs. Information Sciences,

2001; 131: 47-64.

17. Wegener J, Baresel A, Sthamer H. Evolutionary test environment for automatic structural testing.

Information and Software Technology, 2001;43:841-54.

18. Michael C, McGraw G, Schatz M. Generating Software Test Data by Evolution. IEEE Transactions

on Software Engineering, 2001;27(12): 1085-1110.

19. Siqueira P M, Jino M. Automatic test data generation for program paths using genetic algorithms.

International Journal of Software Engineering and Knowledge Engineering, 2002;12(6): 691-709.

20. Mansour N, Salame M. Data generation for path testing. Software Quality Journal, 2004;12: 121-36.

 25

21. Storn R. On the usage of differential evolution for function optimization. North American Fuzzy

Information Processing Society, 1996. p. 519-23.

22. Tracey N, Clark J, Mander K, McDermid J. An Automated Framework for Structural Test-Data

Generation. 13th IEEE Conference on Automated Software Engineering, 1998, p. 285-88.

23. Glover F. Tabu search: part I. ORSA Journal on Computing, 1989;1(3): 190-206.

24. Dell’Amico M, Trubian M. Applying tabu search to the job-shop scheduling problem. Annals of

Operations Research 1993;41:231–52.

25. Hubscher R, Glover F. Applying tabu search with influential diversification to multiprocessor

scheduling. Computers&Operations Research, 1994;21(8):877–84.

26. Gendreau M, Laporte G, Musaraganyi C, Taillard W E. A tabu search heuristic for the heterogeneous

fleet vehicle routing problem. Computers&Operations Research 1999;26: 1153–73.

27. Hertz A, Werra D. Using tabu search techniques for graph coloring. Computing 1987;39: 345–51.

28. Osman IH, Laporte G. Metaheuristics: a bibliography. Annals of Operations Research 1996;63: 513–

623.

29. Glover F, Laguna M. Tabu search. Dordrecht: Kluwer Academic Publishers, 1997.

30. Díaz E, Tuya J, Blanco R. Automated Software Testing Using a Metaheuristic Technique Based on

Tabu Search. 18th IEEE International Conference on Automated Software Engineering, 2003. p.310-

313.

31. Deo N. Graph theory with applications to Engineering and Computer Science. Ed. Prentice Hall,

1974.

32. Glover F. Tabu search: part II. ORSA Journal on Computing 1990;2: 4–32.

33. Tracey N, Clark J, Mander K, McDermid J. Automated test-data generation for exception conditions.

Software Practice and Experience, 2000;30(1): 61-79.

34. Ferguson R, Korel B. The Chaining Approach for Software Test Data Generation. ACM Transactions

on Software Engineering and Methodology, 1996;5(1): 63-86.

35. Ince D C. The automatic generation of test data. The Computer Journal, 1987;30(1): 63-69.

CVs
Eugenia Díaz received the MS and PhD degrees in Computer Science from the University of Oviedo,

Spain in 1998 and 2005, respectively. Currently, she is an assistant professor in the Computing

 26

Department at the University of Oviedo. She has authored several papers about software testing with

metaheuristic techniques. Her research interests are in software engineering, especially software testing

and its automation.

Javier Tuya received both his MS and PhD degrees in the Polytechnic School of Engineering of Gijón,

Spain in 1988 and 1995, respectively. He has worked as manager in many software development projects

and held the position of CIO of the University of Oviedo, Spain. Currently he is associate professor in the

Computing Department at the University of Oviedo. His current research interests are in the ?eld of

software management, process improvement, veri?cation & validation and testing. He has published in

different international conferences and journals, and is member of professional associations such as IEEE,

IEEE Computer Society and ACM.

Raquel Blanco is an assistant professor of Department of Computer Science at the University of Oviedo,

Spain. She received the MS degree in Computer Science from the University of Oviedo, in 2002.

Currently, she is a Ph.D student that is working on the automatic test case generation. Her research

interests are in the area of software engineering, specially in software testing.

Jose Javier Dolado received both his MS and PhD in computer science from the University of the

Basque Country, Spain in 1985 and 1989, respectively. He is a professor in the Department of Computer

Languages and Systems at the University of the Basque Country, Spain. He was awarded three prizes for

his academic achievements. His current research interests are in software measurement, empirical

software engineering, dynamics of the software development process, qualitative reasoning and complex

systems. His works have appeared in several refereed journals and he has served on various program

committee relating to international conferences on software quality and process improvement. He is a

member of the ACM, ACM Sigsoft, IEEE, and IEEE Systems, Man and Cybernetics Society.

 27

Figure captions

Figure 1. Tool Scheme
Figure 2. Example of a CFG
Figure 3 - TSGen general algorithm
Figure 4- Example of the best test cases stored together with their cost for a CFG node ni
Figure 5. Example of node subgoal and CS selection
Figure 6. Backtracking process example: Stage 1 application when the subgoal node has several parent
nodes
Figure 7. “Triangle classifier” control flow graph
Figure 8. Evolution of the number of test cases generated and time for the “Triangle Classifier” program
using integer input variables
Figure 9. Evolution of the number of test cases generated and time for the “Triangle Classifier” program
using real input variables
Figure 10. “Line Rectangle Classifier” control flow graph
Figure 11. Evolution of the number of test cases generated and time for the “Line Rectangle Classifier”
program
Figure 12. The “Number of days” control flow graph
Figure 13. Evolution of the number of test cases generated and time for the ‘Number of days’ program

Figures

Figure 1. Tool Scheme

Figure 2. Example of a CFG

 28

Figure 3 - TSGen general algorithm

Figure 4- Example of the best tests stored together with their cost for a CFG node ni

begin
Initialise Current Solution
Calculate the cost of Current Solution
Store Current Solution in CFG
Add Current Solution to tabu list ST
Select a subgoal node to be covered
do
 Calculate neighbourhood candidates
 Calculate the cost of candidates: each non tabu candidate is executed
 for each candidate do
 if (candidate cost in node n <CFG cost in node n) then Store candidate in CFG endif
 endfor
 if (subgoal node not covered) then Add Current Solution to tabu list ST
 else Delete tabu list ST
 endif
 Select a subgoal node to be covered
 Select Current Solution using the CFG
 if (Current Solution is depleted) then
 Add Current Solution to tabu list LT
 Apply a backtracking process: new Current Solution and maybe new subgoal node
 endif
while (NOT all nodes covered AND number of iterations<MAXIT)
end

 29

Figure 5. Example of subgoal node and CS selection

Figure 6. Backtracking process example: Stage 1 application when the subgoal node has
several parent nodes

 30

Figure 7. “Triangle classifier” control flow graph

0

10

20

30

40

50

60

70

80

90

100

1 10 100 1000 10000 100000 1000000 1E+07

Number of test cases generated (logarithmic scale)

%
 a

cc
um

ul
at

ed
 c

ov
er

ag
e

TSGen 8 bits
TSGen 16 bits
TSGen 32 bits
Random 8 bits
Random 16 bits
Random 32 bits

0

10

20

30

40

50

60

70

80

90

100

0,01 0,1 1 10 100 1000

time (seconds), logarithmic scale

%
 a

cc
um

ul
at

ed
 c

ov
er

ag
e

TSGen 8 bits
TSGen 16 bits
TSGen 32 bits
Random 8 bits
Random 16 bits
Random 32 bits

Figure 8. Evolution of the number of tests generated and time for the “Triangle Classifier”
program using integer input variables

0

10

20

30

40

50

60

70

80

90

100

1 10 100 1000 10000 100000 1000000 10000000

Number of test cases generated (in logarithmic scale)

%
 a

cc
um

ul
at

ed
 c

ov
er

ag
e

TSGen +-100.000

TSGen +-1000.000

TSGen +-100000.000

Random >=+-100.000

0

10

20

30

40

50

60

70

80

90

100

0,01 0,1 1 10 100 1000

time (seconds), logarithmic scale

%
 a

cc
um

ul
at

ed
 c

ov
er

ag
e

TSGen +-100.000

TSGen +-1000.000

TSGen +-100000.000

Random >=+-100.000

Figure 9. Evolution of the number of tests generated and time for the “Triangle Classifier”
program using real input variables

 31

0

1

2 3

4

5 6

7 8

9 10

11

12

13

xr1 < xr2 && yr1
< yr2 && xl1

<=xl2

xl1 >= xr1 && xl1 <= xr2 && xl2
>= xr1 && xl2 <= xr2 && yl1 >=
yr1 && yl1 <= yr2 && yl2 >= yr1

&& yl2 <= yr2

! (xl1 >= xr1 && xl1 <= xr2 &&
xl2 >= xr1 && xl2 <= xr2 && yl1
>= yr1 && yl1 <= yr2 && yl2 >=

yr1 && yl2 <= yr2)

52

yl1 == yl2

yl1 <
yr1

yl1 >
yr2

! (yl1 <
yr1)

! (yl1 >
yr2)

xl1 > xr2
|| xl2 <

xr1

! (xl1 > xr2
|| xl2 < xr1)

14

15

16 17

! (yl1 == yl2)

xl1 == xl2

yl1 > yr2
|| yl2 <

yr1

! (xl1 <
xr1)

18 19

20 21

22

! (yl1 >
yr2 || yl2 <

yr1)

23

24

! (xl1 >
xr2)

xl1 > xr2

xl1 < xr1

25

26 27

xl1 < xr1 &&
xl2 < xr1

28 29

30 31

32

4849

yl1 < yr1 &&
yl2 < yr1

! (yl1 < yr1
&& yl2 < yr1)

yl1 > yr2
&& yl2 >

yr2

! (yl1>yr2
&& yl2>yr2)

! (xl1 < xr1
&& xl2 <

xr1)

xl1 > xr2 &&
xl2 > xr2

33

! (xl1 > xr2
&& xl2 >

xr2)

34 35

x >= xr1 &&
x <= xr2

! (x >= xr1
&& x <=

xr2)

36 37

x >= xr1 &&
x <= xr2

! (x >= xr1
&& x <=

xr2)

38 39

y >= yr1 &&
y <= yr2

! (y >= yr1
&& y <=

yr2)

40 41

y >= yr1 &&
y <= yr2

! (y >= yr1
&& y <=

yr2)

424344454647505153

! (xr1 < xr2 &&
yr1 < yr2 && xl1

<=xl2)

! (xl1 == xl2)

Figure 10. “Line Rectangle Classifier” control flow graph

0

10

20

30

40

50

60

70

80

90

100

1 10 100 1000 10000 100000 1000000 10000000

Number of test cases generated (in logarithmic scale)

%
 a

cc
u,

ul
at

ed
 c

ov
er

ag
e

TSGen +-100.000

TSGen +-1000.000
TSGen +-100000.000

Random +-100.000

Random +-1000.000

Random +-10000.000

0

10

20

30

40

50

60

70

80

90

100

0,001 0,01 0,1 1 10 100 1000 10000

time (seconds) in logarithmic scale

%
 a

cc
um

ul
at

ed
 c

ov
er

ag
e

TSGen +-100.000

TSGen +-1000.000

TSGen +-100000.000

Random +-100.000

Random +-1000.000

Random +-10000.000

Figure 11. Evolution of the number of tests generated and time for the “Line Rectangle Classifier”
program

 32

0 1
year0 >= 2000 && year0 < 2100

&& year1 >=2000 && year1 < 2100
&& mon0 > 0 && mon0 <= 12 &&

mon1 > 0 && mon1 <= 12 && day0
> 0 && day1 > 0

2
mon0 <= 7

3

mon0 %
2 == 0

4 5 7 9 11

16

17

6

mon0
== 2

year0 %
4 == 0

! (year0 %
4 == 0)

8

! (mon0
== 2)

10

! (mon0 %
2 == 0)

12 13
! (mon0 <= 7)

mon0 %
2 == 0

14

day0 >
day15

18192021

2224262833

! (day0 >
day)

mon1 <= 7mon1 %
2 == 0

mon1
== 2year1 %

4 == 0

23

! (year1
% 4 == 0)

25

! (mon1
== 2)

27

! (mon1 %
2 == 0)

29

! (mon1
<= 7)

30

31

mon1 %
2 == 0

! (mon1 %
2 == 0)

! (mon1 %
2 == 0)

32

day1 >
day

35

! (day0 >
day)

37

38

39

43 44

! (year0 >
year1) 36

year0 >
year1

year0 ==
year1

mon0 >
mon1

40

! (mon0 >
mon1)

41

mon0 ==
mon1 &&

day0 > day1
42

! (mon0 == mon1
&& day0 > day1)

45 46

year0 !=
year1

47 48 49
mon <= 7 mon %

2 == 0 mon == 2

57

50

year0 %
4 == 0

51

! (year0 %
4 == 0)

53

! (mon
== 2)

55

! (mon %
2 == 0)! (mon <= 7)

58

mon %
2 == 0

59

! (mon %
2 == 0)

52545660

6162636465666870
mon <= 12mon <= 7

67

69 71

72

73

mon %
2 == 0

mon == 2year0 %
4 == 0

! (year0 %
4 == 0)

! (mon %
2 == 0)

! (mon
== 2)

74
75

! (mon
<= 7)

mon %
2 == 0 ! (mon %

2 == 0)

76
77

78

79

80 81

82

83

84

! (year0 != year1)

! (mon <= 12)

year0 !=
year1

! (year0
!= year1)

year0 %
4 == 0

! (year0 %
4 == 0)

85868788899193

mon0 != mon1

mon0
<= 7

mon0 %
2 == 0mon0 == 2year0 %

4 == 0

90
! (year0 %

4 == 0)

92

! (mon0
== 2)

94

! (mon0 %
2 == 0)

96

! (mon0
<= 7)

95

97

mon0 %
2 == 0

98

! (mon0 %
2 == 0)

99

100

117

101

102 103 104 105 107 109

mon0 <
mon1

mon0 <= 7
mon0 %
2 == 0

mon0 == 2 year0 %
4 == 0

106! (year0 %
4 == 0)

108

! (mon0
== 2)

110

! (mon0 %
2 == 0)

111
112

! (mon0
<= 7)

113

mon0 %
2 == 0

114

! (mon0 %
2 == 0)

115

116
119

! (mon0 <
mon1)

118

! (mon0 !=
mon1)

120 121

122

! (year0 >= 2000 && year0 < 2100
&& year1 >=2000 && year1 < 2100
&& mon0 > 0 && mon0 <= 12 &&

mon1 > 0 && mon1 <= 12 && day0
> 0 && day1 > 0)

34

Figure 12. The “Number of days” control flow graph

0

10

20

30

40

50

60

70

80

90

100

1 10 100 1000 10000 100000 1000000 10000000

Number of test cases generated (in logarithmic scale)

%
 a

cc
um

ul
at

ed
 c

ov
er

ag
e

TSGen 8 bits

TSGen 16 bits

TSGen 32 bits

Random 8 bits

Random >8 bits

0

10

20

30

40

50

60

70

80

90

100

0,1 1 10 100 1000

time (seconds), logarithmic scale

%
 a

cc
um

ul
at

ed
 c

ov
er

ag
e

TSGen 8 bits

TSGen 16 bits

TSGen 32 bits

Random 8 bits

Random >8 bits

Figure 13. Evolution of the number of tests generated and time for the ‘Number of days’ program

 33

Tables
Table 1. TSGen cost function fnj

ni(x)

Type operator Condnj
 ni TSGen fnj

ni(x)

Relational with
equality

x=y
x=y
x=y

|x-y|

Relational
without equality

x?y
x<y
x>y

|x-y|+σ being σ˜ 0 and σ>0

AND c1∧c2∧...∧cn // the cost is the sum of the costs of all the false clauses

 ∑
FALSEc

ci
ni

nj
i

xf)(

OR c1∨c2∨...∨cn // the cost is the minimum of the costs of all the false clauses
Minimum(fnj

ni(x)ci) ∀ci=FALSE
NOT ¬c Negation is propagated using the law of De Morgan

¬(c1∧c2) is treated as ¬c1∨¬c2: fnj
ni(x)=Minimum(fnj

ni(x)¬ci)
∀ci=FALSE

¬(c1∨ c2) is treated as ¬c1∧¬c2: fnj
ni(x)= ∑ ¬

FALSEc
c

ni
nj

i

i
xf)(

Table 2. TSGen cost function fpni(x)

Type
operator

Condni
 TSGen fpni(x)

Relational
with equality

x=y
x=y
x=y

|x-y|

Relational
without
equality

x?y
x<y
x>y

|x-y|-σ being σ˜ 0 and σ>0

AND c1∧c2∧...∧cn Minimum(fp(x)ci) ∀ci=TRUE

OR c1∨c2∨...∨cn ∑
TRUEc

c
i

i
xfp)(

NOT ¬c Negation is propagated using the law of De Morgan

 34

Table 3. Features of the results of previous works

Adequacy criterion: Structural (coverage) Type of input Published Results

Control-flow For the developed generator Includes comparison with a random
generator respect to Technique

State-
ment Branch C/D Loop

Data-
flow integer real

Explicit
ranges
for the
input Number of

tests
generated

% coverage
(or success) Time

Number of
tests

generated

% coverage
(or success) Time

 [9] (1995) GA x x A x x x x

[10] (1995) GA x x A x x x x

[11] (1996) GA x x x x A x x x x x x

[12] (1996) GA x x x x x N x x

[22] (1998) SA x x x N x

[13] (1998) GA x x A x x x** x x x**

[14] (1999) GA x x x x x x x

[16] (2001) GA x x x A x x

[17] (2001) GA x x x x S x x N x x

[18] (2001) GA x x x S* x* N S* x*

[19] (2002) GA x x x x x N x x

[20] (2004) GA, SA x x x A x x x**
* not mean results
**only for one of the used benchmarks
Technique: GA-Genetic Algorithms, SA-Simulated Annealing
Explicit ranges for the input: A- for All the benchmarks, S- for Some benchmarks
Time for the developed technique: N- Not detailed: only reported an interval time in which are included all experiments

 35

Table 4. Final results for the “Triangle Classifier” program

TSGen Random

Tests % cov. Time (sec.) Tests % cov. Time (sec.)

Range
8 bits 217 100 0.111 170,315 100 5

Range
16 bits 738 100 0.442 10,000,000 91.67 298

Range
32 bits 19552 100 21.425 10,000,000 58.33 298

Range
±100.000

697 100 0.395 10,000,000 58.33 330

Range
±1000.000

819 100 0.475 10,000,000 58.33 330

Range
±100000.000

1435 100 0.864 10,000,000 58.33 330

Table 5. Final results for the “Line Rectangle Classifier” program

TSGen Random

Tests % cov. Time (sec.) Tests % cov. Time (sec.)

Range
±100.000

29191 100 53,86 10,000,000 58.33 1210

Range
±1000.000

24606 100 43,91 10,000,000 58.33 1212

Range
±100000.000

33303 100 60,69 10,000,000 58.33 1210

Table 6. Final results for the “Number of days” program

TSGen Random

Tests % cov. Time (sec.) Tests % cov. Time (sec.)

Range
8 bits 25765 100 84.27 10,000,000 83.60 742

Range
16 bits 28081 100 96.63 10,000,000 1.16 686

Range
32 bits 65317 100 251.38 10,000,000 1.16 686

