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ABSTRACT 

Populating test databases with meaningful test data is a difficult 
task as it involves generating data for many joined tables that must 

be diverse enough to be able to reveal faults and small enough to 

make the testing process efficient. This paper proposes an 
approach for the automatic generation of a test database for a set 

of SQL queries using a test criterion specifically tailored for the 

SQL language (SQLFpc). Given as input a schema database and a 
set of test requirements derived from the application of the test 

criterion to the target queries, the approach returns a database 

instance which satisfies the test requirements. Both the schema 
and the test requirements are modeled in the Alloy language, after 

which the analyzer generates the test database. The approach is 

evaluated on a real case study and the results show its feasibility, 
generating a test database of reduced size with an elevated 

coverage and mutation score. 

Categories and Subject Descriptors 
D.2.5 [Software Engineering]: Testing and Debugging - Testing 
tools 

General Terms 
Reliability, Experimentation, Languages, Verification. 

Keywords 
Software testing, database testing, test database generation, 

MCDC; SQL coverage, SQLFpc, Alloy toolset. 

1. INTRODUCTION 
Database applications play an important role in today's 
commercial systems. Most of the business logic of these 

applications is implemented using the SQL language and the 

testing process of the queries is a difficult task because it includes 
populating a test database which may involve many tables and 

then checking the results of executing the queries on the test 

database. In the area of the test database generation, there are a 

number of tools, for example [3], which enable the automatic 

generation of a database, but in general often ignore the semantics 
of the logic that should be tested and therefore do not exercise the 

queries. 

Recent research introduces query-aware test generation 

procedures [1] [12] [5] [18], which use the information from both 

the query and the schema. In general, these approaches use very 
simple test criteria on the query to guide the test generation. 

However, due to the different semantics of SQL language 

compared to procedural languages, these criteria are not sufficient 
for testing SQL queries. On the other hand, there are a number of 

approaches in the literature, for example [10] [9] [21] [13] that 
focus the definition of test adequacy criteria for databases. These 

approaches are principally targeted to assess the adequacy of a test 

database, but not for test database generation. 

In this paper, we address the issue of the query-aware test 
database generation for SQL queries. As test criteria, we use a test 

coverage criterion, named SQLFpc, specifically tailored to deal 

with the particularities of the SQL queries [17]. It is based on the 
Modified Condition Decision Coverage (MCDC) [6] and provides 

a set of test requirements or coverage rules that the test database 
must fulfill. Conceptually, given a query and a database schema, 

our goal is to automatically generate a test database that covers 

the test requirements specified by the SQLFpc criterion for the 
query. To do this, our approach first generates a set of test 

requirements from the target query, then models both the schema 

and the requirements as a set of constraints in the Alloy language 
[10] and finally uses the Alloy analyzer [22] to generate an 

instance that satisfies both the schema and the test requirements. 

The generated instance is a test database that covers many of the 
test requirements for the target query. Although the use of Alloy 

for database testing is not new [12], we provide a novel 

representation of the database schema by modeling all the tables 
in a single structure that enables the support for larger databases 

schemas. 

On the other hand, it is usual to use the same test database for a 
set of queries, as it reduces the cost of the test preparation and 

execution. Unlike many query-aware generation procedures, 

which generate one test database for each individual query of an 
application, our approach supports the automatic generation of a 

single test database for multiple queries within the application. 

The main contributions of this work are: 

• Query-aware Test Generation. We present an approach for 

automatic populating test databases which employs a 

coverage criterion specifically tailored for SQL queries.  
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• Alloy for Test Database Generation. We propose a novel 

representation in Alloy that enables handling larger databases 
and multiples queries. 

• Evaluation. We evaluate the approach on an industrial case 

study including a number of queries and a schema with a 
large number of tables and columns.  

The remainder of the paper is organized as follows: Section 2 

introduces the background and notation used in the paper. Section 
3 describes in detail the test database generation using the Alloy 

toolset. Section 4 describes the results of the experiments over a 

real case study and Section 5 discusses the related work. The 
paper ends with conclusions and future work.  

2. BACKGROUND AND NOTATION 

2.1 The Relational Model  
Relations. In the relational model of databases [7], given a set of 

attributes A={A1,A2,..,An} over a set of domains D1,D2,…,Dn a 
relation denoted as R(A1,A2,…,An) or R(A) is a subset of the 

Cartesian product of the domains. In the SQL language, a relation 

is a table, a tuple is a row of the table, attributes are the columns 
of the table and the domains define data types of the attributes. A 

characteristic of the relational model is the definition of the three-

valued logic corresponding to the presence of missing information 
in the values of the attributes (null values). To handle the missing 

information, we define the Boolean predicate nl(Ai) that is true at 
the tuples where the attribute Ai is null. 

Database constraints. Database constraints specify restrictions on 

the database that require relations and attributes to satisfy certain 

properties. In SQL, the nullability constraint (NOT NULL) forces 
an attribute to not accept null values. An attribute is nullable if it 

has been declared in the database schema without the NOT NULL 
constraint. The primary key constraint specifies a set of attributes 

in a relation that uniquely identifies a tuple of the table. The 

foreign key constraint in a relation points to a primary key in 
another table.  

Queries. Queries are defined in the form Z←rve, where rve 

denotes a relation-valued expression (an expression whose 
evaluation yields a relation) and Z is a relation containing the 

tuples obtained when applying the rve. The select operator 

Z←R[p(A)] (in SQL, SELECT*FROM R WHERE p(A)) uses a 

relation R(A) and generates a relation Z with some rows of R(A) 

according to the predicate p on the attributes of A. The inner join 

operator Z←R[p(A,B)]S (in SQL, SELECT * FROM R INNER 

JOIN S ON p(A,B)) uses two relations, R(A) and S(B), and 

generates a relation Z with tuples of R(A) concatenated with 

tuples of S(B) where the logical condition p(A,B) is evaluated 
true. The left outer join returns the result of the inner join, plus 

those tuples in R(A) that do not match the join operator. The right 
outer join operator is symmetric to the left join. The full outer join 

is defined as the union of the inner join, the left outer join and the 

right outer join. For identifying each join type in an rve 
expression, we use the notation R[p(A,B)]TS, where T={I,L,R,F} 

denotes the join type (inner, left, right and full, respectively).  

In this work, we support SQL SELECT queries consisting of 

WHERE conditions and a number of JOIN operators. Also, the 

nullability and the primary and the foreign key database 
constraints are supported. 

Figure 1(a) shows an example of a database schema defining the 

Orders and ItemLine tables with their nullability, primary 

and foreign key constraints. Figure 1(b) shows an SQL query that 

lists the orders and their item lines for those item lines with 

quantity distinct from 5 or price equals 3. The rve for the query is 

Orders[oid=ioid]IItemLine[quantity≠5 ∨ price=3]. This example 

will be used in the rest of the work to illustrate the approach. 

a)Database schema 

CREATE TABLE Orders( 

  oid INTEGER PRIMARY KEY NOT NULL, 

  odate DATE); 

CREATE TABLE ItemLine( 

  iid INTEGER PRIMARY KEY NOT NULL, 

  ioid INTEGER FOREIGN KEY REFERENCES Orders, 

  quantity INTEGER, 

  price INTEGER NOT NULL); 

b)SQL query  

SELECT * FROM  

Orders O INNER JOIN ItemLine I ON O.oid=I.ioid 

WHERE I.quantity <> 5 OR I.price = 3 

Figure 1: Example of (a) database schema (b) query 

2.2 Test Coverage Criterion for SQL Queries 

An MCDC-based coverage criterion, named SQLFpc, for 
assessing the coverage of the test data in relation to a query that is 

executed is defined in [17]. It is specifically adapted for handling 

the particularities of the SQL queries. This criterion can also be 
used for designing meaningful test inputs. To illustrate this, 

consider the example query in Figure 1(b). Using this criterion, 

the tester should design a test database for covering the following 
test situations: 

• Include rows such that the conditions in the WHERE clause 

I.quantity<>5 and I.price=3 are: (1) both false, (2) 

true and false and (3) false and true. 

• Because the column I.quantity may be NULL, include 

rows such that (4) I.quantity is NULL and I.price=3 

is false. 

• Because there is an INNER JOIN operator, include rows 

such that (5) there exists rows in the table Orders without 

joined rows in the table ItemLine, (6) there exists rows in 

the table ItemLine without joined rows in the table 

Orders and the WHERE condition is true. Note that this 

situation can be possible because ioid in the table 

ItemLine may contain the NULL value. 

Each of these situations specifies a test requirement that can be 

expressed by an SQL query and constitutes a coverage rule. The 

process for generating a set of coverage rules from a given SQL 
query has been automated and implemented in the SQLFpc tool 

[23]. Applying this tool to the query of the example, we obtain the 
following coverage rules (expressed as relation-valued 

expressions and SQL queries) for the above test situations (2), (4) 

and (5): 

(2) Orders[oid=ioid]IItemLine[(quantity≠5) ∧¬ (price=3)] 

SELECT * FROM Orders O INNER JOIN ItemLine I 

ON O.oid = I.ioid WHERE (I.quantity <> 5) 

AND NOT(I.price = 3) 



(4) Orders[oid=ioid]IItemLine[nl(quantity) ∧ ¬(price=3)] 

SELECT * FROM Orders O INNER JOIN ItemLine I 

ON O.oid = I.ioid WHERE (I.quantity IS NULL) 

AND NOT(I.price = 3) 

(5) Orders[oid=ioid]LItemLine[nl(ioid) ∧ ¬ nl(oid)] 

SELECT * FROM Orders O LEFT JOIN ItemLine I 

ON O.oid = I.ioid WHERE (I.oid IS NULL) AND 

(O.oid IS NOT NULL) 

Given a test database, a coverage rule holds if the execution of the 

corresponding SQL query against the test database produces at 

least one row as output. The coverage rules allow to measure the 
coverage of a test database against a set of queries or be used as a 

test input selection criterion. In the scope of this paper, they are 

used as a test selection criterion with the goal of populating the 
test database. 

2.3 Alloy for Database Modeling and Testing 

Alloy [10] is a first-order declarative language based on sets and 

relations. An Alloy model consists in a set of signatures (sig) 

which enables the definition of elements and a set of relations 
(fields) between them, and a set of constraints that restricts the 

space of the model. Constraints in Alloy can be of two types. A 

fact (fact) is a constraint that always holds. Predicates (pred) 

are constraints formulas whose satisfiability needs to be checked. 

The Alloy analyzer [22] translates the specification into 

propositional formulas and generates a set of finite scope 
instances that satisfy the constraints. 

A previous approach in test database generation with Alloy [12] is 
based on modeling each table of the schema as a signature 

consisting of a relation over the domains of each attribute, that is, 
each table is modeled with a relation defined as the Cartesian 

product of its column domains (for a table with n columns, a n-

arity relation). Database constraints are specified as fact 
constraints over the signature of each table. Although this 

representation is consistent with the relational model, it has the 

main drawback of its scalability. Because each table of the 
database is represented as the Cartesian product of its column 

domains and the analyzer enumerates all the solutions (test 

databases) that satisfy the specification, it could be infeasible to 
process large tables as the state space to analyze could be much 

larger. In our preliminary experiments, the Alloy analyzer ran out 

of memory in databases with tables with more than five columns 
(5-arity relations).  

So, the approach here will be different. Instead of modeling the 
input schema (with a set of signatures with n-arity relations, one 

for each table), we will model the output of the coverage rules by 

means of a single signature consisting of a set of binary relations 
representing the attributes of the input schema. Details will be 

given in the next sections. 

3. TEST INPUT GENERATION 
Overview and Example. The approach takes as input a database 
schema and a set of SQLFpc coverage rules obtained from the 

target SQL queries and generates a database instance for testing 

the queries. Because the goal is generate a test database that 
fulfills the coverage rules, we model the database considering the 

output of the coverage rules, that is, a single relation consisting of 

all the attributes in the input schema. We name this relation as 

database relation. Given that a coverage rule holds if it execution 

produces at least one tuple in the output, coverage rules will be 
specified as constraints over the database relation with the aim to 

instruct the solver to find a solution over such relation. Finally, 

the tables of the input schema will be populated with this solution. 

Consider the schema and the query of Figure 1 and the SQLFpc 

coverage rules in Section 2.2. The database relation is a relation 
consisting of the attributes of the Orders and ItemLine tables, 

plus an attribute index for identifying each tuple. This relation 

can be view as:  

 Orders ItemLine 

index oid odate iid ioid quantity price 

… …  … … … … 

In order to keep the data consistent with the relational model, we 

also must define a set of integrity constraints over this structure. 
For example, regarding the oid column that is the primary key in 

the Orders table, we must state that if its value is repeated in 

more than one tuple in the database relation, the corresponding 
values of the columns of the Orders table must have the same 

value.  

Each SQLFpc coverage rule is defined as a constraint that the 

target database relation must satisfy. For example, the coverage 
rule corresponding to the test situation (2) 

(Orders[oid=ioid]IItemLine[(quantity≠5)∧¬(price=3)]) in the 

Section 2.2 is specified as a constraint with the aim of instructing 
the solver to generate at least one tuple in the database relation 

where (oid=ioid) and (quantity≠5) and ¬(price=3). Figure 2 shows 

a possible solution that the solver could find considering the 
coverage rules (2), (4) and (5) of the example (Section 2.2). 

Finally, we populate each table of the schema using the solution 

found by the analyzer (see Figure 3). As a result, the generated 
database contains test data covering the test situations (coverage 

rules) for the query. 

  Orders ItemLine 

Cov. 

Rule 

index oid odate iid ioid quantity price 

2 1 1 date0 1 1 6 2 

4 2 2 date1 2 2 NULL 2 

5 3 3 date0 NULL NULL NULL NULL 

Figure 2: Example of a solution  

Orders   ItemLine 

oid odate  iid ioid quantity price 

1 date0  1 1 6 2 

2 date1  2 2 NULL 2 

3 date0      

Figure 3: Test database example 

Problem Statement. Given a database schema X, an SQL query 

Q and a set of SQLFpc coverage rules ∆(Q) for the query Q, the 

goal is to obtain an instance of the database for the schema X such 

that fulfills the coverage rules in ∆(Q). To make it possible, the 

approach proceeds with the following steps: 

1) Model both the schema and the SQLFpc coverage rules as a 

set of constraints. The schema X is represented considering 
the output of the coverage rules, denoted as the database 

relation R, and each coverage rule ∆i∈∆(Q) is specified as a 

constraint formula ∂i that R must satisfy. 

2) Solve the model in order to find an instance of R such that 

the coverage rules are fulfilled. 



3) Populate each table of the schema X with the instance found 

to load R.  

In the following sections, we show how to model the database 

relation (and its integrity constraints) and the coverage rules in 

Alloy specifications, and how to find a test database that satisfies 
the coverage rules. We illustrate it through templates and 

examples that should be adequate for understanding how the 

approach works. 

3.1 Database Relation Model  

Given a database schema X, the database relation R is a set of 

binary relations named attribute relations (one for each attribute 

in X) in the form AttName(Num,AttDomain), where AttName is 

the name of the attribute, Num represents a domain used for 

identifying each element of R and AttDomain is the domain of the 

attribute. (ix,value)∈AttName denotes the value of the attribute 

AttName in the tuple identified by ix in R. For example, the first 

tuple in Figure 2 is <(1,1),(1,date0),(1,1),(1,1),(1,6),(1,2)>. 

Because there is a mapping between an attribute in X and its 

corresponding attribute relation in R, we will also use the term 

attribute to denote the attribute relation in R. 

The next template models the database relation R in Alloy, 

considering a database schema X formed by two relations, R(A) 
and S(B): 

sig D1{} … sig Dk{} // Data types definition 

sig Num {} 

one sig NULL {} //denotes the null value  

one sig DBrel{  //Database relation 

  index: set {Num}, 

  // Attribute relations for R(A) and S(B) 

  A1: Num -> {Di+NULL},…, An: Num -> {Di+NULL}, 

  B1: Num -> {Di+NULL},…, Bm: Num -> {Di+NULL} 

} 

 

Since Alloy only includes the basic type integer with a reduced 
scope, attribute domains are represented symbolically by defining 

an empty signature for each attribute domain. An additional data 

type with one element (NULL) is defined for representing the 
missing information. The database relation is represented by a 

single sig declaration (DBrel) that considers all the attribute 

relations, plus a field (index) for identifying each tuple in R. 

Attribute relations are modeled as the Cartesian product between 

the index domain and the attribute domain. Because the null value 
could appear in each attribute value, the image of each attribute 

relation is extended with the NULL data type ({Di+NULL}). To 

access the value of a given attribute Ai corresponding to the index 
x in DBrel, either the expression Ai[x] or x.Ai could be used.  

3.2 Database Relation Constraints 

A set of constraints must be defined in order to assure the 

consistency of the data in the R with regard to the relational 

schema X. Because integrity constraints define restrictions in the 
database relation that is assumed to always hold and are applied 

over all tuples in the database relation, they are specified as a set 

of universal quantified fact constraints over the DBRel signature.  

Index and Attribute Values. The first constraint that we must 

define is related to the values that the index could take in R. 

Thus, for each tuple in R, the value of the index must be unique 

(all x:index | one x). In the same way and for each attribute 

Ai in R, the values in the domain of the attribute relation must 
also be unique (all x:Ai.(Di+NULL)|one x.Ai ). In 

addition, for each attribute, we must impose that the values both 

in the index attribute and in the domain of each attribute relation 
are consistent between them. That is, each value in the index 

points to the domain of an attribute relation and vice versa:  

all x: index | x in Ai.(Di+NULL) 

all x: Ai.(Di+NULL) | x in index 

 

Nullability Constraints. An initial idea could be to define a 

constraint for each attribute that is labeled with the NOT NULL in 

X. However, in the database relation R, this constraint could be 
not valid. Consider the example in Figure 2, row 3, where the 

iid attribute has the null value. The constraint does not hold, but 

the situation is feasible because it denotes a row in the table 
Orders without joined rows in the table ItemLine (see Figure 

3). Thus, instead of formulating the nullability constraints for each 
individual attribute we define the following constraint rules: 

• If an attribute is primary key in a relation of X and takes null 

values in a tuple in R, all the attributes of the same relation 

must have the null value in the same tuple in R. 

• If an attribute is primary key in a relation of X and takes not 

null value in a tuple in R, all the attributes of the same 

relation must have the not null value in the same tuple, 
excluding those attributes that are nullables, which can take 

any value (NULL or NOT NULL). 

The following Alloy constraints define the above rules for the 

attribute relations corresponding to the attributes A1,..,An in X 

assuming that A1 is a primary key and the attribute An is nullable. 

For checking whether the data is null or not two predicates are 
defined (isNULL and isNotNULL respectively): 

all x:index | isNULL[A1[x]]=>  

isNULL[A2[x]] and … and isNULL[An[x]] 

all x:index | isNotNULL[A1[x]]=> 

isNotNULL[A2[x]]and … and isNotNULL [An-1 [x]] 

 
 

Primary Key Constraints. The primary key constraints could be 

defined for each primary key of the relations in X by means of a 

fact constraint expressing that its value is unique. However, in R 

two or more tuples could have the same value for a primary key 

defined in the relations of X. This situation occurs when a row in 

a table is joined with two or more rows in another table. 

In R this type of constraints must state that if an attribute is a 

primary key in a relation of X and its value is repeated in more 

than one tuple, the corresponding values of the attributes of the 
relation must have the same value. Considering the attributes A1 

and A2, where A1 is a primary key and A2 is nullable, the 

constraint in R is defined as follows: 

all x: index,y:index |(NOT[eq[x,y]])=True and 

                eq[A1[x],A1[y]]= True ) =>  

                eq[A2[x],A2[y]] = True or  

               (isNULL[A2[x]]and isNULL[A2[y]] ) 

 

The function eq implements the equal operator considering the 

characteristic of three valued logic (in a similar form, the function 

neq can be defined): 



fun eq [x:univ,y:univ]:(Bool+ NULL){ 

  (isNotNULL[x] and isNotNULL[y]) =>  

  (x=y => True else False) else NULL 

} 

Foreign Key Constraints. This applies to those attributes in a 

relation of X that reference other attributes in another relation. It 

states that the values corresponding to the foreign key attribute in 
a relation must be either a subset of those corresponding to the 

primary key attribute in the relation that the foreign key references 

or its value must be null if it is nullable. Given the schema X, let 
B1 be as a foreign key in the relation S(B) and A1 the primary key 

in the relation R(A) that it references. The foreign key constraint 

in R is formulated in Alloy as follows: 

all x:index | B1[x] in A1[num] or isNULL[B1[x]] 

3.3 Coverage Rules Representation 

A coverage rule for an SQL query denotes a test situation that the 

target test database must fulfill. Because a coverage rule holds if 

its execution over the test database returns at least one row, the 
goal is that there exist some tuples in the database relation that 

satisfy the coverage rules. Therefore, in addition to schema 

constraints, we must provide a constraint in order to satisfy each 

coverage rule. For each coverage rule ∆i∈∆(Q) a predicate 

constraint ∂i is defined. Since the goal is to instruct the analyzer to 

find at least one tuple satisfying the coverage rule, the 
corresponding constraints must be existentially quantified. For 

readability, here we restrict the presentation to coverage rules in 
the form R[p(A,B)]TS[q(A,B)], that is, an expression with a JOIN 

operator of type T and a condition p(A,B) and a WHERE clause 

with a condition q(A,B). For rules without JOINs or with nested 
JOINs, the representation is similar. 

Coverage Rules with INNER JOIN. In general, given a database 

relation R and a coverage rule R[p(A,B)]TS[q(A,B)], the 

corresponding formula ∂ would be declared as follows: 

some x:DBRel.index | p(DBrel.A, DBRel.B) and  

                     q(DBrel.A, DBRel.B) 

This predicate expresses that there must exist some tuples (some 

x:DBrel.index) such as both the JOIN predicate 

(p(DBrel.A,DBRel.B)) and the WHERE predicate 

(q(DBrel.A,DBrel.B)) hold. To model the constants in the 

WHERE predicate, we add new singleton signatures related with 
each constant defined in the coverage rule. For example, consider 

the SQLFpc coverage rule (2) of the example 

Orders[oid=ioid]IItemLine[(quantity≠5)∧¬(price=3): 

some x: DBrel.index | 

( eq[DBrel.oid[x], DBrel.ioid[x]] = True and 

  neq[DBrel.quantity[x],const_5] = True and 

  NOT (eq[DBrel.price[x],const_3] = True 

) 

 

This formula is sound when the join type is INNER, because it 

imposes that there exist tuples in the relation R(A) joined with 

tuples in S(B). However, for the OUTER JOINs, the formula must 
be modified. 

Coverage Rules with OUTER JOINs.. In the case of LEFT 
JOIN, this coverage rule denotes a test situation where there exists 

at least one tuple in R(A) without joined tuples in S(B). The 

predicate that codes this constraint is: 

some x: DBrel.index |  

( p(DBrel.A, DBrel.B) or 

  DBrel.A[x] !in DBrel.B[num] or  

  isNULL[DBrel.A[x]] ) and q(A,B) 

 

In this case, the JOIN predicate is “relaxed” allowing that the 
value of the primary key attribute in the relation R(A) is not 

referenced in the corresponding foreign key attribute in the 

relation S(B) (DBrel.A[x]!in DBrel.B[num]) or it has 

the null value (isNULL[DBrel.A[x]]). 

For coverage rules with RIGHT JOIN, the procedure is 

symmetric. 

3.4 Populating the Test Database and Support 

for Multiples Queries 

In order to generate the target test database for a query Q that 

satisfies all the coverage rules ∆(Q), we must define a formula 
∂(Q) as the conjunction of the formulas for each coverage rule 

∆i∈∆(Q), that is, ∂(Q)=⋀∂i. In Alloy, this formula is represented 
as a predicate encapsulating all the coverage rule constraints: 

pred testDatabase {  

   ∂1 and ∂2 and … and ∂n 

} 

Under certain circumstances it would not be feasible to find a 

single instance satisfying all constraints due to incompatibilities 

between two or more coverage rules. In order to detect and avoid 
this situation, the coverage rules are added to the 

testDatabase predicate and then executed in an incremental 

way; first, only the constraints ∂1 and ∂2 are considered and 
executed, then the constraint ∂3 is added and so on. If the solver 

can’t find a solution in each step, the last added coverage rule is 

discarded. As final result, only consistent coverage rules are in the 
testDatabase predicate. Future work will be addressed in 

order to achieve early detection of these incompatibilities prior to 

the solver execution. 

Then, the analyzer is instructed (run testDatabase) to find 

an instance with symbolic values that fulfills both the database 

constraints and the testDatabase predicate. As an example, 

consider the output generated by the analyzer represented in 
Figure 2 (only the sets and relations corresponding to the index 

and the columns of the ItemLine table are presented): 

index:{num$1, num$2, num$3} 

iid:{<num$1,intType$1>,<num$2,intType$2>, 

     <num$3,null$0> } 

ioid:{<num$1,intType$1>,<num$2,intType$2>, 

     <num$3,null$0>} 

quantity:{<num$1,intType$6>,<num$2,null$0>,  

     <num$3,null$0>} 

price:{<num$1,intType$2>,<num$2,intType$2>,  

     <num$3,null$0>} 

 

In order to generate the specific test database, we assign the 

values of the attributes in each relation defined in X with the 

values of each attribute in the database relation R (DBrel) as 

indicated in the steps below: 

1. For each relation in X and for each tuple in R, extract the 
values of its constituent attributes in R and create a row for 
the corresponding table. If the row was previously created it 
will be redundant and therefore discarded. 



2. Each symbolic value in the rows of a table must be mapped 
to the specific one, according to the data type defined in the 
schema definition. 

3. Populate each table of X with the corresponding created 
rows by means of executing a set of SQL INSERT 
commands. 

In the above example, the following rows for the ItemLine 

table are created: 

<intType$1, intType$1, intType$6, intType$2> 

<intType$2, intType$2, null$0, intType$2> 

 

Each symbolic value is replaced by the specific values indicated 
in Figure 3, table ItemLine, and the rows are inserted in the 

table. 

Multiples Queries. Up to this point, we have presented the 

approach for generating a test database considering only a target 

SQL query. Since the approach models the entire schema (all the 
tables) and not only the tables that participate in a specific query, 

conceptually it is also focused to generate a single database, but 

considering a number of SQL queries. Given a database relation 

R, and a set of queries Q1,Q2,…,Qn over R, the formula ⋀∂(Qi) 

specifies a constraint predicate enforcing to find an instance of R 
that satisfies the coverage rules for all the queries. As results, the 

analyzer returns an instance of R satisfying the coverage rules of 

all the queries, and therefore it is a test database for all the 
considered queries. In Alloy, the procedure is similar to that 

indicated above, but encapsulating the coverage rule formulas 

corresponding to the set of queries to be tested into the single 
predicate testDatabase. 

pred testDatabase { 

   ∂(Q1) and ∂(Q2) and … and ∂(Qn) 

} 

4. CASE STUDY 
In order to illustrate the approach, a case study is presented where 

a test database is generated for a set of queries obtained from a 
real application. This application is a real-life helpdesk system 

that manages user requests. The main information stored is the 

helpdesk ticket, which is created for each user request. Whenever 
an action is performed on a ticket, a history record is created. The 

application implements a complete security subsystem that, before 

starting each transaction, executes a set of the SQL queries 
embedded in the procedural code. 

The case study database to be populated is composed of 37 tables 
with 230 columns in all. Experiments have been run on an Intel® 

Core ™2 Duo PC, 2GHz with 3GB of memory and using the 

Alloy toolset v.4.0 and the SQLFpc tool v.1.0.63.0. 

4.1 Test Database Generation 

In this case study, 20 SQL queries have been selected with 

different complexity (number of joins and conditions in the 
WHERE clause). Following the process described, the set of 

coverage rules for all SQL queries is obtained applying the 
SQLFpc tool. Then, an Alloy specification is generated for the 

database schema and the set of coverage rules of all the queries 

under study. The resulting final Alloy specification contains a 
single signature (DBrel) for the database relation with 231 fields 

corresponding to the 230 columns of the input schema plus the 

index field, 1,347 database constraints (facts) and a unique 

predicate consisting of the 75 constraints corresponding to the 

coverage rules for all the queries.  

The analyzer, with this specification, was instructed to generate an 

instance of the database. The analyzer returns a test database that 
satisfies 65 coverage rules out of a total of 75. There are another 

10 coverage rules which have not been covered because they are 

inconsistent with the rest of the coverage rules and therefore do 
not allow the analyzer to find a solution. After examining the 

cause of this inconsistence, we found that in most cases, they were 

originated by incompatibilities between the WHERE and/or JOIN 
conditions in two or more coverage rules related to the same SQL 

query. For instance, consider the following two coverage rules of 

the case study:  

SELECT ID from Status WHERE (Final=0) AND (ID=2) 

SELECT ID from Status WHERE (Final<>0) AND (ID=2) 

 

These rules state for test data in the Status table with the 

column ID equal to 2 and the Final column equal to 0 and 

distinct to 0 respectively. Because the ID is the primary key 

column, it is not possible to cover the two coverage rules in the 

same instance of the Status table and as a consequence test data 

is generated for a single coverage rule (the other rule is 

inconsistent). 

The number of generated rows in the final test database was 139 

spread over 32 tables. The rest of the tables (only 5) neither 

participate directly in the queries nor indirectly by means of 
foreign keys. For this reason, the analyzer does not have any 

constraint to assign values. The total time for generating the target 

test database, including the time needed for generating the 
SQLFpc coverage rules, solving all the constraints (database 

constraints plus those derived from the coverage rules) and 
executing the SQL commands to populate each table of the 

database was 285 seconds. 

4.2 Analysis of the Results 

In order to compare the fault detection ability and the coverage of 

generated test database, we use a copy of the production database. 

The production database has 22,387 tickets, 103,553 history 
records and 279 users. In total, the database contains 139,259 

rows. The analysis of the results is considered from two aspects. 

Firstly, the percentages of SQLFpc coverage for both databases 
(the generated test and the production) were measured. To 

compute the coverage, the SQLFpc tool is used. Secondly, a 

mutation analysis is used to compare the effectiveness in detecting 
faults of both databases (test and production). In this case study, 

the mutation operators used are those defined by Tuya et al. [16] 
in order to check kinds of faults specifically related to the SQL 

language. For each of the queries in the case study, a set of 

mutated queries has been generated in an automated way using the 
SQLMutation tool [15] [24] and executed against the generated 

test and production database. The results of the two analyses are 

summarized in Table 1. 

The ID column identifies each of the queries of the study. The 

second group of columns contains the results of the evaluation of 
the coverage: number of SQLFpc coverage rules (#CovR) for each 

query (75 coverage rules in total) and the percentage of covered 

rules (%SQLFpc) according to the SQLFpc criterion using the 
production database (Prod.) and the generated test database 



(Test). For all the queries, the coverage using the generated test 

database is always equal or higher than using the production 
database. Therefore, with less data (139 rows in the test database, 

139,259 rows in the production database), the coverage is greater 

(an average of 86.67% and 57.33% with the test and the 
production databases respectively). The last group of columns 

contains the results of the mutation analysis (#Mut. and 

%MutScore). The number of mutants in total is 3,479. As can be 
observed, in most of the cases, for all the queries of the study, the 

mutation score is greater in the test database than in the 

production database. On average, using the production database 
66.54% of the mutants are dead, whereas with the generated test 

database the mutation score reaches an average of 84.13%. 

Therefore, the generated test database is more effective detecting 
faults even though the number of rows is far fewer. 

Table 1: Results of SQLFpc coverage and mutation score 

using the production database and the generated test database 

ID #CovR %SQLFpc # Mut. %Mut.Score 

Prod. Test Prod. Test 

Q1 11 27.27 100.00 317 8.83 94.64 

Q2 5 40.00 100.00 138 76.81 84.78 

Q3 6 50.00 66.67 132 90.15 81.06 

Q4 3 66.67 100.00 99 81.82 89.90 

Q5 3 100.00 100.00 65 84.62 66.15 

Q6 2 100.00 100.00 38 86.84 92.11 

Q7 2 100.00 100.00 313 95.21 90.10 

Q8 3 66.67 100.00 60 88.33 88.33 

Q9 5 40.00 40.00 59 28.81 32.20 

Q10 3 66.67 66.67 71 19.72 85.92 

Q11 6 50.00 100.00 82 58.54 91.46 

Q12 2 100.00 100.00 30 90.00 73.33 

Q13 2 100.00 100.00 30 86.67 90.00 

Q14 2 50.00 100.00 41 9.76 80.49 

Q15 2 50.00 100.00 41 9.76 80.49 

Q16 3 0.00 100.00 44 2.27 75.00 

Q17 3 100.00 100.00 776 72.04 88.02 

Q18 3 100.00 100.00 776 80.03 90.46 

Q19 3 66.67 66.67 210 92.86 90.00 

Q20 6 50.00 50.00 157 16.56 15.29 

Total 75 57.33 86.67 3,479 66.54 84.13 

 

In conclusion, the results of these experiments show the feasibility 
of the approach in order to populate a single test database for a set 

of SQL queries attaining good scores in the coverage and the fault 
detection ability. That implies that the generated test database 

contains a good diverse set of rows (in the sense that they exercise 

the target queries) that are good enough to be used for testing 
purposes (regarding fault detection capability). 

5. RELATED WORK  
Test database generation is a challenging problem which has 

concentrated some research efforts.  

Some of them employ automated reasoning to populate the 

database. Khalek et al. [12] define a tool for data generation 
incorporating Alloy specifications both for the schema and the 

query. Each table is modeled as a separate n-arity relation over the 

attribute domains and the query is specified as a set of constraints 
that models the condition in the WHERE clause. As test criterion, 

they use a predicate coverage criterion over the predicate of the 

WHERE clause. However, this approach cannot handle tables 

with a larger number of attributes due to the arity of the table 
relations. In contrast with this work, our approach models the 

schema with a unique structure with a set binary relation, thus 

facilitating the support for larger schemas and databases, and we 
use a specific test criterion for SQL queries that takes into account 

the particularities of the SQL language, such as JOIN operators 

and nullable values. In Veanes et al. [18], the satisfiability modulo 
theories solver Z3 has been used to generate input data for SQL 

queries satisfying a given test condition. Whereas in this work the 

test conditions are given in an ad-hoc fashion (the query result is 
empty, nonempty, contains a value, etc.), our approach employs 

automated and query-based test conditions (SQLFpc coverage 

rules) to guide the database generation. Binning et al [1] propose 
a technique named “reverse query processing” for generating test 

databases that takes the query and the desired output as input and 

generates a database instance (using a model checker) that could 
produce that output for the query. This approach supports one 

SQL query and therefore generates one test database for each 

query. A further extension to this work [2] supports a set of 
queries and allows to specify to the user the output constraints in 

the form of SQL queries. However, the creation of these 

constraints could be difficult if the source specification is not 
complete. There are other works which use general purpose 

constraint solvers to populate the test database [14] [19] [8]. As in 
preceding works, the coverage criterion for generating the test 

database is not specifically tailored for SQL queries but rather for 

predicates or user constraints and therefore, the generated test 
database does not provide enough confidence to exercise the 

target query from a testing point of view. 

In the specification-based area, Chays et al. [4] describe a tool 

that populates databases with test data that satisfies the schema 

constraints. However, in some situations the approach could 
return empty outputs. An improved approach is presented in [5] 

by means of the execution of “test generation queries”. It requires 

tester intervention to provide the data groups whereas our work 
relies on the SQLFpc coverage rules and thus the test input 

generation process is fully automatic. Wilmor and Embury [19] 

develop a technique to specify intensional test cases for database 
applications. The database test cases are formed by preconditions 

that specify the initial state of the database and postconditions that 

must hold after execution of the target program. While the 
postconditions are outside the scope of this work, the 

preconditions have a similar purpose to the SQLFpc coverage 

rules we use, but in our approach they are automatically 
generated. 

6. CONCLUSIONS AND FUTURE WORK 
This work presents an approach for the automatic generation of 

test databases for a representative subset of SQL queries using a 
specific test criterion adapted for such queries and the Alloy 

toolset for modeling and data generation. Database schema is 

represented by means of a view of the entire database. Although 
this representation implies the definition of additional data 

consistency constraints with regard to those defined in the 

relational model, it does not introduce a significant overhead on 
the analyzer (in terms of time and space). On the contrary, we 

found that it facilitates the handling of larger databases.  

The overall approach is fully automated so the tester is not 

required during the test data preparation phase. The experiments 



executed over a real case study show the feasibility of the 

approach in generating a single test database of reduced size with 
a high coverage and fault detection ability (measured in terms of 

the mutation score) for a number of non-trivial SQL queries over 

a large schema. 

A practical limitation of the approach is derived from the 

limitations of the Alloy solver to handle arithmetical and string-
based expressions that hinder its application to SQL queries with 

aggregate functions and string operations. We are investigating 

the use of the integer and string solvers with Alloy in order to 
support this type of clauses. In this line, we will extend the 

approach to handle other SQL clauses, such as subqueries, nested 

join and grouping and other SQL queries such as updates. In its 
current form the approach does not detect coverage rules 

incompatibilities until the solver is executed. The early detection 

of such inconsistencies between the coverage rules could help to 
increment the coverage of the generated test databases. 
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