
Constraint-based Test Database Generation for SQL

Queries

Claudio de la Riva, María José Suárez-Cabal, Javier Tuya
Computer Science Department - University of Oviedo

Campus Universitario de Gijón – SPAIN
(34) 98518 2451

{claudio,cabal,tuya}@uniovi.es

ABSTRACT

Populating test databases with meaningful test data is a difficult
task as it involves generating data for many joined tables that must

be diverse enough to be able to reveal faults and small enough to

make the testing process efficient. This paper proposes an
approach for the automatic generation of a test database for a set

of SQL queries using a test criterion specifically tailored for the

SQL language (SQLFpc). Given as input a schema database and a
set of test requirements derived from the application of the test

criterion to the target queries, the approach returns a database

instance which satisfies the test requirements. Both the schema
and the test requirements are modeled in the Alloy language, after

which the analyzer generates the test database. The approach is

evaluated on a real case study and the results show its feasibility,
generating a test database of reduced size with an elevated

coverage and mutation score.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging - Testing
tools

General Terms
Reliability, Experimentation, Languages, Verification.

Keywords
Software testing, database testing, test database generation,

MCDC; SQL coverage, SQLFpc, Alloy toolset.

1. INTRODUCTION
Database applications play an important role in today's
commercial systems. Most of the business logic of these

applications is implemented using the SQL language and the

testing process of the queries is a difficult task because it includes
populating a test database which may involve many tables and

then checking the results of executing the queries on the test

database. In the area of the test database generation, there are a

number of tools, for example [3], which enable the automatic

generation of a database, but in general often ignore the semantics
of the logic that should be tested and therefore do not exercise the

queries.

Recent research introduces query-aware test generation

procedures [1] [12] [5] [18], which use the information from both

the query and the schema. In general, these approaches use very
simple test criteria on the query to guide the test generation.

However, due to the different semantics of SQL language

compared to procedural languages, these criteria are not sufficient
for testing SQL queries. On the other hand, there are a number of

approaches in the literature, for example [10] [9] [21] [13] that
focus the definition of test adequacy criteria for databases. These

approaches are principally targeted to assess the adequacy of a test

database, but not for test database generation.

In this paper, we address the issue of the query-aware test
database generation for SQL queries. As test criteria, we use a test

coverage criterion, named SQLFpc, specifically tailored to deal

with the particularities of the SQL queries [17]. It is based on the
Modified Condition Decision Coverage (MCDC) [6] and provides

a set of test requirements or coverage rules that the test database
must fulfill. Conceptually, given a query and a database schema,

our goal is to automatically generate a test database that covers

the test requirements specified by the SQLFpc criterion for the
query. To do this, our approach first generates a set of test

requirements from the target query, then models both the schema

and the requirements as a set of constraints in the Alloy language
[10] and finally uses the Alloy analyzer [22] to generate an

instance that satisfies both the schema and the test requirements.

The generated instance is a test database that covers many of the
test requirements for the target query. Although the use of Alloy

for database testing is not new [12], we provide a novel

representation of the database schema by modeling all the tables
in a single structure that enables the support for larger databases

schemas.

On the other hand, it is usual to use the same test database for a
set of queries, as it reduces the cost of the test preparation and

execution. Unlike many query-aware generation procedures,

which generate one test database for each individual query of an
application, our approach supports the automatic generation of a

single test database for multiple queries within the application.

The main contributions of this work are:

• Query-aware Test Generation. We present an approach for

automatic populating test databases which employs a

coverage criterion specifically tailored for SQL queries.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

AST’10, May 3–4, 2010, Cape Town, South Africa.

Copyright © 2010 ACM 978-1-60558-970-1/10/05 ... $10.00

tuya
Cuadro de texto
© ACM 2015. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in:
Proceedings of the 5th Workshop on Automation of Software Test (AST'10) Pages 67-74. ACM, New York, NY, USA. ISBN: 978-1-60558-970-1
DOI: http://dx.doi.org/10.1145/1808266.1808276

• Alloy for Test Database Generation. We propose a novel

representation in Alloy that enables handling larger databases
and multiples queries.

• Evaluation. We evaluate the approach on an industrial case

study including a number of queries and a schema with a
large number of tables and columns.

The remainder of the paper is organized as follows: Section 2

introduces the background and notation used in the paper. Section
3 describes in detail the test database generation using the Alloy

toolset. Section 4 describes the results of the experiments over a

real case study and Section 5 discusses the related work. The
paper ends with conclusions and future work.

2. BACKGROUND AND NOTATION

2.1 The Relational Model
Relations. In the relational model of databases [7], given a set of

attributes A={A1,A2,..,An} over a set of domains D1,D2,…,Dn a
relation denoted as R(A1,A2,…,An) or R(A) is a subset of the

Cartesian product of the domains. In the SQL language, a relation

is a table, a tuple is a row of the table, attributes are the columns
of the table and the domains define data types of the attributes. A

characteristic of the relational model is the definition of the three-

valued logic corresponding to the presence of missing information
in the values of the attributes (null values). To handle the missing

information, we define the Boolean predicate nl(Ai) that is true at
the tuples where the attribute Ai is null.

Database constraints. Database constraints specify restrictions on

the database that require relations and attributes to satisfy certain

properties. In SQL, the nullability constraint (NOT NULL) forces
an attribute to not accept null values. An attribute is nullable if it

has been declared in the database schema without the NOT NULL
constraint. The primary key constraint specifies a set of attributes

in a relation that uniquely identifies a tuple of the table. The

foreign key constraint in a relation points to a primary key in
another table.

Queries. Queries are defined in the form Z←rve, where rve

denotes a relation-valued expression (an expression whose
evaluation yields a relation) and Z is a relation containing the

tuples obtained when applying the rve. The select operator

Z←R[p(A)] (in SQL, SELECT*FROM R WHERE p(A)) uses a

relation R(A) and generates a relation Z with some rows of R(A)

according to the predicate p on the attributes of A. The inner join

operator Z←R[p(A,B)]S (in SQL, SELECT * FROM R INNER

JOIN S ON p(A,B)) uses two relations, R(A) and S(B), and

generates a relation Z with tuples of R(A) concatenated with

tuples of S(B) where the logical condition p(A,B) is evaluated
true. The left outer join returns the result of the inner join, plus

those tuples in R(A) that do not match the join operator. The right
outer join operator is symmetric to the left join. The full outer join

is defined as the union of the inner join, the left outer join and the

right outer join. For identifying each join type in an rve
expression, we use the notation R[p(A,B)]TS, where T={I,L,R,F}

denotes the join type (inner, left, right and full, respectively).

In this work, we support SQL SELECT queries consisting of

WHERE conditions and a number of JOIN operators. Also, the

nullability and the primary and the foreign key database
constraints are supported.

Figure 1(a) shows an example of a database schema defining the

Orders and ItemLine tables with their nullability, primary

and foreign key constraints. Figure 1(b) shows an SQL query that

lists the orders and their item lines for those item lines with

quantity distinct from 5 or price equals 3. The rve for the query is

Orders[oid=ioid]IItemLine[quantity≠5 ∨ price=3]. This example

will be used in the rest of the work to illustrate the approach.

a)Database schema

CREATE TABLE Orders(

 oid INTEGER PRIMARY KEY NOT NULL,

 odate DATE);

CREATE TABLE ItemLine(

 iid INTEGER PRIMARY KEY NOT NULL,

 ioid INTEGER FOREIGN KEY REFERENCES Orders,

 quantity INTEGER,

 price INTEGER NOT NULL);

b)SQL query

SELECT * FROM

Orders O INNER JOIN ItemLine I ON O.oid=I.ioid

WHERE I.quantity <> 5 OR I.price = 3

Figure 1: Example of (a) database schema (b) query

2.2 Test Coverage Criterion for SQL Queries

An MCDC-based coverage criterion, named SQLFpc, for
assessing the coverage of the test data in relation to a query that is

executed is defined in [17]. It is specifically adapted for handling

the particularities of the SQL queries. This criterion can also be
used for designing meaningful test inputs. To illustrate this,

consider the example query in Figure 1(b). Using this criterion,

the tester should design a test database for covering the following
test situations:

• Include rows such that the conditions in the WHERE clause

I.quantity<>5 and I.price=3 are: (1) both false, (2)

true and false and (3) false and true.

• Because the column I.quantity may be NULL, include

rows such that (4) I.quantity is NULL and I.price=3

is false.

• Because there is an INNER JOIN operator, include rows

such that (5) there exists rows in the table Orders without

joined rows in the table ItemLine, (6) there exists rows in

the table ItemLine without joined rows in the table

Orders and the WHERE condition is true. Note that this

situation can be possible because ioid in the table

ItemLine may contain the NULL value.

Each of these situations specifies a test requirement that can be

expressed by an SQL query and constitutes a coverage rule. The

process for generating a set of coverage rules from a given SQL
query has been automated and implemented in the SQLFpc tool

[23]. Applying this tool to the query of the example, we obtain the
following coverage rules (expressed as relation-valued

expressions and SQL queries) for the above test situations (2), (4)

and (5):

(2) Orders[oid=ioid]IItemLine[(quantity≠5) ∧¬ (price=3)]

SELECT * FROM Orders O INNER JOIN ItemLine I

ON O.oid = I.ioid WHERE (I.quantity <> 5)

AND NOT(I.price = 3)

(4) Orders[oid=ioid]IItemLine[nl(quantity) ∧ ¬(price=3)]

SELECT * FROM Orders O INNER JOIN ItemLine I

ON O.oid = I.ioid WHERE (I.quantity IS NULL)

AND NOT(I.price = 3)

(5) Orders[oid=ioid]LItemLine[nl(ioid) ∧ ¬ nl(oid)]

SELECT * FROM Orders O LEFT JOIN ItemLine I

ON O.oid = I.ioid WHERE (I.oid IS NULL) AND

(O.oid IS NOT NULL)

Given a test database, a coverage rule holds if the execution of the

corresponding SQL query against the test database produces at

least one row as output. The coverage rules allow to measure the
coverage of a test database against a set of queries or be used as a

test input selection criterion. In the scope of this paper, they are

used as a test selection criterion with the goal of populating the
test database.

2.3 Alloy for Database Modeling and Testing

Alloy [10] is a first-order declarative language based on sets and

relations. An Alloy model consists in a set of signatures (sig)

which enables the definition of elements and a set of relations
(fields) between them, and a set of constraints that restricts the

space of the model. Constraints in Alloy can be of two types. A

fact (fact) is a constraint that always holds. Predicates (pred)

are constraints formulas whose satisfiability needs to be checked.

The Alloy analyzer [22] translates the specification into

propositional formulas and generates a set of finite scope
instances that satisfy the constraints.

A previous approach in test database generation with Alloy [12] is
based on modeling each table of the schema as a signature

consisting of a relation over the domains of each attribute, that is,
each table is modeled with a relation defined as the Cartesian

product of its column domains (for a table with n columns, a n-

arity relation). Database constraints are specified as fact
constraints over the signature of each table. Although this

representation is consistent with the relational model, it has the

main drawback of its scalability. Because each table of the
database is represented as the Cartesian product of its column

domains and the analyzer enumerates all the solutions (test

databases) that satisfy the specification, it could be infeasible to
process large tables as the state space to analyze could be much

larger. In our preliminary experiments, the Alloy analyzer ran out

of memory in databases with tables with more than five columns
(5-arity relations).

So, the approach here will be different. Instead of modeling the
input schema (with a set of signatures with n-arity relations, one

for each table), we will model the output of the coverage rules by

means of a single signature consisting of a set of binary relations
representing the attributes of the input schema. Details will be

given in the next sections.

3. TEST INPUT GENERATION
Overview and Example. The approach takes as input a database
schema and a set of SQLFpc coverage rules obtained from the

target SQL queries and generates a database instance for testing

the queries. Because the goal is generate a test database that
fulfills the coverage rules, we model the database considering the

output of the coverage rules, that is, a single relation consisting of

all the attributes in the input schema. We name this relation as

database relation. Given that a coverage rule holds if it execution

produces at least one tuple in the output, coverage rules will be
specified as constraints over the database relation with the aim to

instruct the solver to find a solution over such relation. Finally,

the tables of the input schema will be populated with this solution.

Consider the schema and the query of Figure 1 and the SQLFpc

coverage rules in Section 2.2. The database relation is a relation
consisting of the attributes of the Orders and ItemLine tables,

plus an attribute index for identifying each tuple. This relation

can be view as:

 Orders ItemLine

index oid odate iid ioid quantity price

… … … … … …

In order to keep the data consistent with the relational model, we

also must define a set of integrity constraints over this structure.
For example, regarding the oid column that is the primary key in

the Orders table, we must state that if its value is repeated in

more than one tuple in the database relation, the corresponding
values of the columns of the Orders table must have the same

value.

Each SQLFpc coverage rule is defined as a constraint that the

target database relation must satisfy. For example, the coverage
rule corresponding to the test situation (2)

(Orders[oid=ioid]IItemLine[(quantity≠5)∧¬(price=3)]) in the

Section 2.2 is specified as a constraint with the aim of instructing
the solver to generate at least one tuple in the database relation

where (oid=ioid) and (quantity≠5) and ¬(price=3). Figure 2 shows

a possible solution that the solver could find considering the
coverage rules (2), (4) and (5) of the example (Section 2.2).

Finally, we populate each table of the schema using the solution

found by the analyzer (see Figure 3). As a result, the generated
database contains test data covering the test situations (coverage

rules) for the query.

 Orders ItemLine

Cov.

Rule

index oid odate iid ioid quantity price

2 1 1 date0 1 1 6 2

4 2 2 date1 2 2 NULL 2

5 3 3 date0 NULL NULL NULL NULL

Figure 2: Example of a solution

Orders ItemLine

oid odate iid ioid quantity price

1 date0 1 1 6 2

2 date1 2 2 NULL 2

3 date0

Figure 3: Test database example

Problem Statement. Given a database schema X, an SQL query

Q and a set of SQLFpc coverage rules ∆(Q) for the query Q, the

goal is to obtain an instance of the database for the schema X such

that fulfills the coverage rules in ∆(Q). To make it possible, the

approach proceeds with the following steps:

1) Model both the schema and the SQLFpc coverage rules as a

set of constraints. The schema X is represented considering
the output of the coverage rules, denoted as the database

relation R, and each coverage rule ∆i∈∆(Q) is specified as a

constraint formula ∂i that R must satisfy.

2) Solve the model in order to find an instance of R such that

the coverage rules are fulfilled.

3) Populate each table of the schema X with the instance found

to load R.

In the following sections, we show how to model the database

relation (and its integrity constraints) and the coverage rules in

Alloy specifications, and how to find a test database that satisfies
the coverage rules. We illustrate it through templates and

examples that should be adequate for understanding how the

approach works.

3.1 Database Relation Model

Given a database schema X, the database relation R is a set of

binary relations named attribute relations (one for each attribute

in X) in the form AttName(Num,AttDomain), where AttName is

the name of the attribute, Num represents a domain used for

identifying each element of R and AttDomain is the domain of the

attribute. (ix,value)∈AttName denotes the value of the attribute

AttName in the tuple identified by ix in R. For example, the first

tuple in Figure 2 is <(1,1),(1,date0),(1,1),(1,1),(1,6),(1,2)>.

Because there is a mapping between an attribute in X and its

corresponding attribute relation in R, we will also use the term

attribute to denote the attribute relation in R.

The next template models the database relation R in Alloy,

considering a database schema X formed by two relations, R(A)
and S(B):

sig D1{} … sig Dk{} // Data types definition

sig Num {}

one sig NULL {} //denotes the null value

one sig DBrel{ //Database relation

 index: set {Num},

 // Attribute relations for R(A) and S(B)

 A1: Num -> {Di+NULL},…, An: Num -> {Di+NULL},

 B1: Num -> {Di+NULL},…, Bm: Num -> {Di+NULL}

}

Since Alloy only includes the basic type integer with a reduced
scope, attribute domains are represented symbolically by defining

an empty signature for each attribute domain. An additional data

type with one element (NULL) is defined for representing the
missing information. The database relation is represented by a

single sig declaration (DBrel) that considers all the attribute

relations, plus a field (index) for identifying each tuple in R.

Attribute relations are modeled as the Cartesian product between

the index domain and the attribute domain. Because the null value
could appear in each attribute value, the image of each attribute

relation is extended with the NULL data type ({Di+NULL}). To

access the value of a given attribute Ai corresponding to the index
x in DBrel, either the expression Ai[x] or x.Ai could be used.

3.2 Database Relation Constraints

A set of constraints must be defined in order to assure the

consistency of the data in the R with regard to the relational

schema X. Because integrity constraints define restrictions in the
database relation that is assumed to always hold and are applied

over all tuples in the database relation, they are specified as a set

of universal quantified fact constraints over the DBRel signature.

Index and Attribute Values. The first constraint that we must

define is related to the values that the index could take in R.

Thus, for each tuple in R, the value of the index must be unique

(all x:index | one x). In the same way and for each attribute

Ai in R, the values in the domain of the attribute relation must
also be unique (all x:Ai.(Di+NULL)|one x.Ai). In

addition, for each attribute, we must impose that the values both

in the index attribute and in the domain of each attribute relation
are consistent between them. That is, each value in the index

points to the domain of an attribute relation and vice versa:

all x: index | x in Ai.(Di+NULL)

all x: Ai.(Di+NULL) | x in index

Nullability Constraints. An initial idea could be to define a

constraint for each attribute that is labeled with the NOT NULL in

X. However, in the database relation R, this constraint could be
not valid. Consider the example in Figure 2, row 3, where the

iid attribute has the null value. The constraint does not hold, but

the situation is feasible because it denotes a row in the table
Orders without joined rows in the table ItemLine (see Figure

3). Thus, instead of formulating the nullability constraints for each
individual attribute we define the following constraint rules:

• If an attribute is primary key in a relation of X and takes null

values in a tuple in R, all the attributes of the same relation

must have the null value in the same tuple in R.

• If an attribute is primary key in a relation of X and takes not

null value in a tuple in R, all the attributes of the same

relation must have the not null value in the same tuple,
excluding those attributes that are nullables, which can take

any value (NULL or NOT NULL).

The following Alloy constraints define the above rules for the

attribute relations corresponding to the attributes A1,..,An in X

assuming that A1 is a primary key and the attribute An is nullable.

For checking whether the data is null or not two predicates are
defined (isNULL and isNotNULL respectively):

all x:index | isNULL[A1[x]]=>

isNULL[A2[x]] and … and isNULL[An[x]]

all x:index | isNotNULL[A1[x]]=>

isNotNULL[A2[x]]and … and isNotNULL [An-1 [x]]

Primary Key Constraints. The primary key constraints could be

defined for each primary key of the relations in X by means of a

fact constraint expressing that its value is unique. However, in R

two or more tuples could have the same value for a primary key

defined in the relations of X. This situation occurs when a row in

a table is joined with two or more rows in another table.

In R this type of constraints must state that if an attribute is a

primary key in a relation of X and its value is repeated in more

than one tuple, the corresponding values of the attributes of the
relation must have the same value. Considering the attributes A1

and A2, where A1 is a primary key and A2 is nullable, the

constraint in R is defined as follows:

all x: index,y:index |(NOT[eq[x,y]])=True and

 eq[A1[x],A1[y]]= True) =>

 eq[A2[x],A2[y]] = True or

 (isNULL[A2[x]]and isNULL[A2[y]])

The function eq implements the equal operator considering the

characteristic of three valued logic (in a similar form, the function

neq can be defined):

fun eq [x:univ,y:univ]:(Bool+ NULL){

 (isNotNULL[x] and isNotNULL[y]) =>

 (x=y => True else False) else NULL

}

Foreign Key Constraints. This applies to those attributes in a

relation of X that reference other attributes in another relation. It

states that the values corresponding to the foreign key attribute in
a relation must be either a subset of those corresponding to the

primary key attribute in the relation that the foreign key references

or its value must be null if it is nullable. Given the schema X, let
B1 be as a foreign key in the relation S(B) and A1 the primary key

in the relation R(A) that it references. The foreign key constraint

in R is formulated in Alloy as follows:

all x:index | B1[x] in A1[num] or isNULL[B1[x]]

3.3 Coverage Rules Representation

A coverage rule for an SQL query denotes a test situation that the

target test database must fulfill. Because a coverage rule holds if

its execution over the test database returns at least one row, the
goal is that there exist some tuples in the database relation that

satisfy the coverage rules. Therefore, in addition to schema

constraints, we must provide a constraint in order to satisfy each

coverage rule. For each coverage rule ∆i∈∆(Q) a predicate

constraint ∂i is defined. Since the goal is to instruct the analyzer to

find at least one tuple satisfying the coverage rule, the
corresponding constraints must be existentially quantified. For

readability, here we restrict the presentation to coverage rules in
the form R[p(A,B)]TS[q(A,B)], that is, an expression with a JOIN

operator of type T and a condition p(A,B) and a WHERE clause

with a condition q(A,B). For rules without JOINs or with nested
JOINs, the representation is similar.

Coverage Rules with INNER JOIN. In general, given a database

relation R and a coverage rule R[p(A,B)]TS[q(A,B)], the

corresponding formula ∂ would be declared as follows:

some x:DBRel.index | p(DBrel.A, DBRel.B) and

 q(DBrel.A, DBRel.B)

This predicate expresses that there must exist some tuples (some

x:DBrel.index) such as both the JOIN predicate

(p(DBrel.A,DBRel.B)) and the WHERE predicate

(q(DBrel.A,DBrel.B)) hold. To model the constants in the

WHERE predicate, we add new singleton signatures related with
each constant defined in the coverage rule. For example, consider

the SQLFpc coverage rule (2) of the example

Orders[oid=ioid]IItemLine[(quantity≠5)∧¬(price=3):

some x: DBrel.index |

(eq[DBrel.oid[x], DBrel.ioid[x]] = True and

 neq[DBrel.quantity[x],const_5] = True and

 NOT (eq[DBrel.price[x],const_3] = True

)

This formula is sound when the join type is INNER, because it

imposes that there exist tuples in the relation R(A) joined with

tuples in S(B). However, for the OUTER JOINs, the formula must
be modified.

Coverage Rules with OUTER JOINs.. In the case of LEFT
JOIN, this coverage rule denotes a test situation where there exists

at least one tuple in R(A) without joined tuples in S(B). The

predicate that codes this constraint is:

some x: DBrel.index |

(p(DBrel.A, DBrel.B) or

 DBrel.A[x] !in DBrel.B[num] or

 isNULL[DBrel.A[x]]) and q(A,B)

In this case, the JOIN predicate is “relaxed” allowing that the
value of the primary key attribute in the relation R(A) is not

referenced in the corresponding foreign key attribute in the

relation S(B) (DBrel.A[x]!in DBrel.B[num]) or it has

the null value (isNULL[DBrel.A[x]]).

For coverage rules with RIGHT JOIN, the procedure is

symmetric.

3.4 Populating the Test Database and Support

for Multiples Queries

In order to generate the target test database for a query Q that

satisfies all the coverage rules ∆(Q), we must define a formula
∂(Q) as the conjunction of the formulas for each coverage rule

∆i∈∆(Q), that is, ∂(Q)=⋀∂i. In Alloy, this formula is represented
as a predicate encapsulating all the coverage rule constraints:

pred testDatabase {

 ∂1 and ∂2 and … and ∂n

}

Under certain circumstances it would not be feasible to find a

single instance satisfying all constraints due to incompatibilities

between two or more coverage rules. In order to detect and avoid
this situation, the coverage rules are added to the

testDatabase predicate and then executed in an incremental

way; first, only the constraints ∂1 and ∂2 are considered and
executed, then the constraint ∂3 is added and so on. If the solver

can’t find a solution in each step, the last added coverage rule is

discarded. As final result, only consistent coverage rules are in the
testDatabase predicate. Future work will be addressed in

order to achieve early detection of these incompatibilities prior to

the solver execution.

Then, the analyzer is instructed (run testDatabase) to find

an instance with symbolic values that fulfills both the database

constraints and the testDatabase predicate. As an example,

consider the output generated by the analyzer represented in
Figure 2 (only the sets and relations corresponding to the index

and the columns of the ItemLine table are presented):

index:{num$1, num$2, num$3}

iid:{<num$1,intType$1>,<num$2,intType$2>,

 <num$3,null$0> }

ioid:{<num$1,intType$1>,<num$2,intType$2>,

 <num$3,null$0>}

quantity:{<num$1,intType$6>,<num$2,null$0>,

 <num$3,null$0>}

price:{<num$1,intType$2>,<num$2,intType$2>,

 <num$3,null$0>}

In order to generate the specific test database, we assign the

values of the attributes in each relation defined in X with the

values of each attribute in the database relation R (DBrel) as

indicated in the steps below:

1. For each relation in X and for each tuple in R, extract the
values of its constituent attributes in R and create a row for
the corresponding table. If the row was previously created it
will be redundant and therefore discarded.

2. Each symbolic value in the rows of a table must be mapped
to the specific one, according to the data type defined in the
schema definition.

3. Populate each table of X with the corresponding created
rows by means of executing a set of SQL INSERT
commands.

In the above example, the following rows for the ItemLine

table are created:

<intType$1, intType$1, intType$6, intType$2>

<intType$2, intType$2, null$0, intType$2>

Each symbolic value is replaced by the specific values indicated
in Figure 3, table ItemLine, and the rows are inserted in the

table.

Multiples Queries. Up to this point, we have presented the

approach for generating a test database considering only a target

SQL query. Since the approach models the entire schema (all the
tables) and not only the tables that participate in a specific query,

conceptually it is also focused to generate a single database, but

considering a number of SQL queries. Given a database relation

R, and a set of queries Q1,Q2,…,Qn over R, the formula ⋀∂(Qi)

specifies a constraint predicate enforcing to find an instance of R
that satisfies the coverage rules for all the queries. As results, the

analyzer returns an instance of R satisfying the coverage rules of

all the queries, and therefore it is a test database for all the
considered queries. In Alloy, the procedure is similar to that

indicated above, but encapsulating the coverage rule formulas

corresponding to the set of queries to be tested into the single
predicate testDatabase.

pred testDatabase {

 ∂(Q1) and ∂(Q2) and … and ∂(Qn)

}

4. CASE STUDY
In order to illustrate the approach, a case study is presented where

a test database is generated for a set of queries obtained from a
real application. This application is a real-life helpdesk system

that manages user requests. The main information stored is the

helpdesk ticket, which is created for each user request. Whenever
an action is performed on a ticket, a history record is created. The

application implements a complete security subsystem that, before

starting each transaction, executes a set of the SQL queries
embedded in the procedural code.

The case study database to be populated is composed of 37 tables
with 230 columns in all. Experiments have been run on an Intel®

Core ™2 Duo PC, 2GHz with 3GB of memory and using the

Alloy toolset v.4.0 and the SQLFpc tool v.1.0.63.0.

4.1 Test Database Generation

In this case study, 20 SQL queries have been selected with

different complexity (number of joins and conditions in the
WHERE clause). Following the process described, the set of

coverage rules for all SQL queries is obtained applying the
SQLFpc tool. Then, an Alloy specification is generated for the

database schema and the set of coverage rules of all the queries

under study. The resulting final Alloy specification contains a
single signature (DBrel) for the database relation with 231 fields

corresponding to the 230 columns of the input schema plus the

index field, 1,347 database constraints (facts) and a unique

predicate consisting of the 75 constraints corresponding to the

coverage rules for all the queries.

The analyzer, with this specification, was instructed to generate an

instance of the database. The analyzer returns a test database that
satisfies 65 coverage rules out of a total of 75. There are another

10 coverage rules which have not been covered because they are

inconsistent with the rest of the coverage rules and therefore do
not allow the analyzer to find a solution. After examining the

cause of this inconsistence, we found that in most cases, they were

originated by incompatibilities between the WHERE and/or JOIN
conditions in two or more coverage rules related to the same SQL

query. For instance, consider the following two coverage rules of

the case study:

SELECT ID from Status WHERE (Final=0) AND (ID=2)

SELECT ID from Status WHERE (Final<>0) AND (ID=2)

These rules state for test data in the Status table with the

column ID equal to 2 and the Final column equal to 0 and

distinct to 0 respectively. Because the ID is the primary key

column, it is not possible to cover the two coverage rules in the

same instance of the Status table and as a consequence test data

is generated for a single coverage rule (the other rule is

inconsistent).

The number of generated rows in the final test database was 139

spread over 32 tables. The rest of the tables (only 5) neither

participate directly in the queries nor indirectly by means of
foreign keys. For this reason, the analyzer does not have any

constraint to assign values. The total time for generating the target

test database, including the time needed for generating the
SQLFpc coverage rules, solving all the constraints (database

constraints plus those derived from the coverage rules) and
executing the SQL commands to populate each table of the

database was 285 seconds.

4.2 Analysis of the Results

In order to compare the fault detection ability and the coverage of

generated test database, we use a copy of the production database.

The production database has 22,387 tickets, 103,553 history
records and 279 users. In total, the database contains 139,259

rows. The analysis of the results is considered from two aspects.

Firstly, the percentages of SQLFpc coverage for both databases
(the generated test and the production) were measured. To

compute the coverage, the SQLFpc tool is used. Secondly, a

mutation analysis is used to compare the effectiveness in detecting
faults of both databases (test and production). In this case study,

the mutation operators used are those defined by Tuya et al. [16]
in order to check kinds of faults specifically related to the SQL

language. For each of the queries in the case study, a set of

mutated queries has been generated in an automated way using the
SQLMutation tool [15] [24] and executed against the generated

test and production database. The results of the two analyses are

summarized in Table 1.

The ID column identifies each of the queries of the study. The

second group of columns contains the results of the evaluation of
the coverage: number of SQLFpc coverage rules (#CovR) for each

query (75 coverage rules in total) and the percentage of covered

rules (%SQLFpc) according to the SQLFpc criterion using the
production database (Prod.) and the generated test database

(Test). For all the queries, the coverage using the generated test

database is always equal or higher than using the production
database. Therefore, with less data (139 rows in the test database,

139,259 rows in the production database), the coverage is greater

(an average of 86.67% and 57.33% with the test and the
production databases respectively). The last group of columns

contains the results of the mutation analysis (#Mut. and

%MutScore). The number of mutants in total is 3,479. As can be
observed, in most of the cases, for all the queries of the study, the

mutation score is greater in the test database than in the

production database. On average, using the production database
66.54% of the mutants are dead, whereas with the generated test

database the mutation score reaches an average of 84.13%.

Therefore, the generated test database is more effective detecting
faults even though the number of rows is far fewer.

Table 1: Results of SQLFpc coverage and mutation score

using the production database and the generated test database

ID #CovR %SQLFpc # Mut. %Mut.Score

Prod. Test Prod. Test

Q1 11 27.27 100.00 317 8.83 94.64

Q2 5 40.00 100.00 138 76.81 84.78

Q3 6 50.00 66.67 132 90.15 81.06

Q4 3 66.67 100.00 99 81.82 89.90

Q5 3 100.00 100.00 65 84.62 66.15

Q6 2 100.00 100.00 38 86.84 92.11

Q7 2 100.00 100.00 313 95.21 90.10

Q8 3 66.67 100.00 60 88.33 88.33

Q9 5 40.00 40.00 59 28.81 32.20

Q10 3 66.67 66.67 71 19.72 85.92

Q11 6 50.00 100.00 82 58.54 91.46

Q12 2 100.00 100.00 30 90.00 73.33

Q13 2 100.00 100.00 30 86.67 90.00

Q14 2 50.00 100.00 41 9.76 80.49

Q15 2 50.00 100.00 41 9.76 80.49

Q16 3 0.00 100.00 44 2.27 75.00

Q17 3 100.00 100.00 776 72.04 88.02

Q18 3 100.00 100.00 776 80.03 90.46

Q19 3 66.67 66.67 210 92.86 90.00

Q20 6 50.00 50.00 157 16.56 15.29

Total 75 57.33 86.67 3,479 66.54 84.13

In conclusion, the results of these experiments show the feasibility
of the approach in order to populate a single test database for a set

of SQL queries attaining good scores in the coverage and the fault
detection ability. That implies that the generated test database

contains a good diverse set of rows (in the sense that they exercise

the target queries) that are good enough to be used for testing
purposes (regarding fault detection capability).

5. RELATED WORK
Test database generation is a challenging problem which has

concentrated some research efforts.

Some of them employ automated reasoning to populate the

database. Khalek et al. [12] define a tool for data generation
incorporating Alloy specifications both for the schema and the

query. Each table is modeled as a separate n-arity relation over the

attribute domains and the query is specified as a set of constraints
that models the condition in the WHERE clause. As test criterion,

they use a predicate coverage criterion over the predicate of the

WHERE clause. However, this approach cannot handle tables

with a larger number of attributes due to the arity of the table
relations. In contrast with this work, our approach models the

schema with a unique structure with a set binary relation, thus

facilitating the support for larger schemas and databases, and we
use a specific test criterion for SQL queries that takes into account

the particularities of the SQL language, such as JOIN operators

and nullable values. In Veanes et al. [18], the satisfiability modulo
theories solver Z3 has been used to generate input data for SQL

queries satisfying a given test condition. Whereas in this work the

test conditions are given in an ad-hoc fashion (the query result is
empty, nonempty, contains a value, etc.), our approach employs

automated and query-based test conditions (SQLFpc coverage

rules) to guide the database generation. Binning et al [1] propose
a technique named “reverse query processing” for generating test

databases that takes the query and the desired output as input and

generates a database instance (using a model checker) that could
produce that output for the query. This approach supports one

SQL query and therefore generates one test database for each

query. A further extension to this work [2] supports a set of
queries and allows to specify to the user the output constraints in

the form of SQL queries. However, the creation of these

constraints could be difficult if the source specification is not
complete. There are other works which use general purpose

constraint solvers to populate the test database [14] [19] [8]. As in
preceding works, the coverage criterion for generating the test

database is not specifically tailored for SQL queries but rather for

predicates or user constraints and therefore, the generated test
database does not provide enough confidence to exercise the

target query from a testing point of view.

In the specification-based area, Chays et al. [4] describe a tool

that populates databases with test data that satisfies the schema

constraints. However, in some situations the approach could
return empty outputs. An improved approach is presented in [5]

by means of the execution of “test generation queries”. It requires

tester intervention to provide the data groups whereas our work
relies on the SQLFpc coverage rules and thus the test input

generation process is fully automatic. Wilmor and Embury [19]

develop a technique to specify intensional test cases for database
applications. The database test cases are formed by preconditions

that specify the initial state of the database and postconditions that

must hold after execution of the target program. While the
postconditions are outside the scope of this work, the

preconditions have a similar purpose to the SQLFpc coverage

rules we use, but in our approach they are automatically
generated.

6. CONCLUSIONS AND FUTURE WORK
This work presents an approach for the automatic generation of

test databases for a representative subset of SQL queries using a
specific test criterion adapted for such queries and the Alloy

toolset for modeling and data generation. Database schema is

represented by means of a view of the entire database. Although
this representation implies the definition of additional data

consistency constraints with regard to those defined in the

relational model, it does not introduce a significant overhead on
the analyzer (in terms of time and space). On the contrary, we

found that it facilitates the handling of larger databases.

The overall approach is fully automated so the tester is not

required during the test data preparation phase. The experiments

executed over a real case study show the feasibility of the

approach in generating a single test database of reduced size with
a high coverage and fault detection ability (measured in terms of

the mutation score) for a number of non-trivial SQL queries over

a large schema.

A practical limitation of the approach is derived from the

limitations of the Alloy solver to handle arithmetical and string-
based expressions that hinder its application to SQL queries with

aggregate functions and string operations. We are investigating

the use of the integer and string solvers with Alloy in order to
support this type of clauses. In this line, we will extend the

approach to handle other SQL clauses, such as subqueries, nested

join and grouping and other SQL queries such as updates. In its
current form the approach does not detect coverage rules

incompatibilities until the solver is executed. The early detection

of such inconsistencies between the coverage rules could help to
increment the coverage of the generated test databases.

7. ACKNOWLEDGMENTS
This work has been funded by the Department of Science and

Innovation (Spain) and ERDF funds (TIN2007-67843-C06-01)
and the Government of Castilla-La Mancha (SV-09-UCLM-1)

(PAC08-121-1374).

8. REFERENCES
[1] Binnig, C., Kossmann, D., Lo, E. 2007. Reverse query

processing. In Proceedings of the 23rd International
Conference on Data Engineering. IEEE Computer

Society,Washington, DC, 506-515.

[2] Binnig, C., Kossmann, D., Lo, E. 2008. MultiRQP -
Generating test databases for the functional testing of OLTP

applications. In Proceedings of the 1st International

Workshop on Testing Database Systems. DBTest ’08. ACM
New York, NY, 1-6.

[3] Bruno, N., Chaudhuri, S. 2005. Flexible database generators.

In Proceedings of the 31st International Conference on Very
Large Data Bases.VLDB Endowment, 1097-1107.

[4] Chays, D., Deng, Y., Frankl, P. G., Dan, S., Vokolos, F. I.,

and Weyuker, E. J. 2004. An AGENDA for testing relational
database applications. Softw. Test. Verif. Reliab. 14, 1 (Mar.

2004), 17-44.

[5] Chays, D., Shahid, J., Frankl, P.G. 2008. Query-based test

generation for database applications. In Proceedings of the
1st International Workshop on Testing Database Systems.

DBTest ’08. ACM New York, NY, 1-6.

[6] Chilenski, J.J. 2001. An investigation of three forms of the
modified condition decision coverage (MCDC) criterion.

Technical Report DOT/FAA/AR-01/18, U.S. Department of

Transportation, Federal Aviation Administration.

[7] Codd, E.F. 1990. The Relational model for database

management - Version 2. Addison-Wesley.

[8] Emmi, M., Majumdar, R., Sen, K. 2007. Dynamic test input
generation of database applications”. In Proceedings of the

International Symposium on Software Testing and Analysis,

ACM New York, NY, 151-162.

[9] Halfond, W.G.J., Orso. A. 2006. Command-form coverage

for testing database applications. In Proceedings of the 21st
IEEE/ACM International Conference on Automated

Software Engineering. IEEE Computer Society, Washington,

DC, 69-80.

[10] Jackson, D. 2002. Alloy: a lightweight object modelling
notation. ACM Trans. Softw. Eng. Methodol. 11, 2 (Apr.

2002), 256-290.

[11] Kapfhammer, G. M. and Soffa, M. L. 2003. A family of test
adequacy criteria for database-driven applications. In

Proceedings of the 9th European Software Engineering

Conference. ESEC/FSE-11. ACM, New York, NY, 98-107.

[12] Khalek, S.A., Elkarablie, B., Laleye, Y.O., Khurshid, A.

2008. Query-aware test generation using a relational

constraint solver. In Proceedings of the 23rd IEEE/ACM
International Conference on Automated Software

Engineering. IEEE Computer Society, Washington, DC, 238-

247.

[13] Suárez-Cabal, M.J., Tuya, J. 2009. Structural coverage

criteria for testing SQL queries. J. Univers. Comput. Sci., 15,

3, 584-619.

[14] Tsai, W.T., Volovik, D., Keefe. T.F. 1990. Automated test

case generation for programs specified by relational algebra

queries. IEEE Trans. Software Eng. 16, 3, 316-324.

[15] Tuya, J., Suárez-Cabal, M.J., de la Riva, C. 2006.
SQLMutation: A tool to generate mutants of SQL database

queries. In Proceedings of the 2nd Workshop on Mutation

Analysis. IEEE Computer Society, Washington, DC, 1-5.

[16] Tuya, J., Suárez-Cabal, M.J., de la Riva, C. 2007. Mutating

database queries. Inform. Software Tech. 49, 4, 398-417.

[17] Tuya, J., Suárez-Cabal, M.J., de la Riva, C. 2010. Full
predicate coverage for testing SQL database queries. Softw.

Test. Verif. Rel, in press.

[18] Veanes, M. Grigorenko, P. de Halleux, P., Nikolai, T.
2009.Symbolic Query Exploration. In Proceedings of the

11th International Conference on Formal Engineering

Methods, LNCS, Vol. 5885, Springer, 49-68.

[19] Willmor, D., Embury S.M. 2006. An intensional approach to
the specification of test cases for database applications. In

Proceedings of the 28th International Conference on
Software Engineering. ACM New York, NY, 102-111.

[20] Zhang, J., Xu, C., Cheung, S.C. 2001. Automatic generation

of database instances for white-box testing. In Proceedings of

the 25th International Computer Software and Applications
Conference. IEEE Computer Society, Washington, DC, 161-

165.

[21] Zhou, C., Frankl, P. 2009. Mutation testing for Java database
applications. In Proceedings of the 2nd International

Conference on Software Testing Verification and Validation.

IEEE Computer Society, Washington DC, 396-405.

[22] The Alloy Analyzer. http://alloy.mit.edu/

[23] SQLFpc tool. http://in2test.lsi.uniovi.es/sqlfpc/

[24] SQLMutation tool http://in2test.lsi.uniovi.es/sqlmutation/

