
A Test Model for Graph Database Applications: An MDA-
Based Approach

Raquel Blanco
Department of Computing

University of Oviedo
Gijón, Spain

rblanco@uniovi.es

Javier Tuya
Department of Computing

University of Oviedo
Gijón, Spain

tuya@uniovi.es

ABSTRACT
NoSQL databases have given rise to new testing challenges due to
the fact that they use data models and access modes to the data
that differ from the relational databases. Testing relational
database applications has attracted the interest of many
researchers; but this is still not the case with NoSQL database
applications. The approach presented in this paper defines a test
model for graph database applications that takes into account the
data model of this technology and the system specification. To
automate the derivation of the test cases and the evaluation of
their adequacy we propose a framework that places model-based
testing into the model-driven architecture context.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification

Keywords
Graph database testing, model-based testing, MDA, specification-
based testing.

1. INTRODUCTION
Databases are probably the most important asset of an
organization, and constitute the core of most software systems.
Nowadays, many organizations need to store a vast amount of
information, and they are increasingly turning to NoSQL
databases to manipulate this large amount of data with higher
performance [21].

There are numerous NoSQL technologies (currently 150) [28],
which are classified into four popular types according to their data
model [26]: key-value, document-based, column-family and graph
databases. These types of database have something in common:
they do not require a schema that restricts the data that can be
stored.

Testing NoSQL database applications is a crucial and a
challenging process for several reasons. On the one hand, NoSQL
technologies do not work with SQL and each one uses its own
APIs and tailored query languages, which are not as widely

known as SQL by the developers. Moreover, the programming of
complex queries can be difficult [21]. In particular, queries of
graph database technologies can be especially verbose and
difficult to write, understand and maintain [2]. Due to these
difficulties, faults can appear in the code that accesses the
database.

On the other hand, despite the fact that NoSQL databases do not
require a schema, the applications usually have an underlying
conceptual model that represents the data stored (henceforth
conceptual data model). As there are no constraints that restrict
their storage, the physical database could contain data that do not
satisfy the conceptual data model. These data can produce
application malfunctions and/or incorrect outputs to the user.

To test database applications, many approaches have been
developed, such as [7], [9], [13], [15], [24]. However, as these
works rely on SQL statements and/or the existence of an explicit
database schema, they cannot be applied to testing NoSQL
database applications. So, it is necessary to develop new testing
approaches for this type of applications, which take into account
the new data models and specific characteristics of each NoSQL
technology.

The scope of this paper is the development of an approach to test
graph database applications that considers the data model
characteristics of this technology. Data are stored in nodes and
relationships among nodes, and both nodes and relationships can
contain properties. The graph databases are gaining in popularity
and thousands of organizations use them in applications such as
social recommendations, logistics, fraud detection, identity and
access management, etc. [27]. To achieve this goal, we propose a
model-based testing approach in the context of model-driven
architecture, so that we benefit from the support of automation of
both paradigms.

The main contributions of this work are:

• The definition of a framework that integrates model-
based testing (MBT) into the model-driven architecture
(MDA) paradigm.

• The definition of a test model for graph database
applications that relies on both the underlying
conceptual data model and the system specification.

The remainder of this paper is organized as follow: Section 2
presents the related work. Sections 3 and 4 describe the
architecture of our MBT/MDA framework and the test model,
respectively. Section 5 presents a case study. The paper ends with
conclusions and future work.

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

A-TEST’15, August 30-31, 2015, Bergamo, Italy
c© 2015 ACM. 978-1-4503-3813-4/15/08...

http://dx.doi.org/10.1145/2804322.2804324

8

2. RELATED WORK

2.1 Testing Database Applications
Several approaches in the literature address the problem of testing
database applications. To guide the generation of test inputs and
evaluate their adequacy, several criteria have been developed.
Works that define program-based adequacy criteria range from
criteria for procedural code that take into account the SQL queries
[10], to criteria specially designed to deal with the SQL
statements [14], [15], [32], [33], [35] and tools to automate the
criteria [16], [31], [39]. Other works define specification-based
adequacy criteria, such as [4]. The generation of test inputs has
been addressed in several works: [3], [23], [36] generate test
databases and [7], [24] both test database and program inputs.

With regard to testing the database schema, works are focused on
defining adequacy criteria [25], [37], generating data to test the
schema constraints [17] or prioritizing the test cases when the
database schema changes [12], [13].

As stated before, these works depend on SQL code and/or explicit
relational database schemas, while our approach is totally
independent. The closest works to ours are those of [17], [37] as
they use the database schema to generate test cases. These works
are focused on testing the database schema. However, our
approach uses a conceptual data model as the basis for designing
the test model according to the system specification.

2.2 Model-Based Testing and Model-Driven

Architecture
Model-based testing (MBT) has been used in several database
testing works, such as [4], [9], [11], [18]. In MBT, the system is

modelled to identify the important aspect to be tested regarding
the expected system behaviour, obtaining a test model. Next, a
test selection criterion is chosen to derive the abstract test cases,
which are then concretized by means of a test generation
technology and translated into executable test cases that can be
run against the software under test (SUT) [34].

On the other hand, MBT can be placed into the MDA context,
obtaining the abstraction levels PIT (Platform Independent Test)
and PST (Platform Specific Test) [8]. The PIT level contains the
test models that are platform independent, whereas at the PST
level the test models contain information about the specific
underlying platform.

Works in the MBT/MDA context are mainly focused on
transforming the system model at the PIM level into the test
model at PIT level [1], [5], [6], [19], [22], and defining
transformations from the PIT level to the PST level and/or the test
code [1], [20], [22], [38]. However, it is important to have some
independence between the system models and the test models,
because mistakes in the system models can be propagated to the
code and the tests and, therefore, they are impossible to detect
[30], [34]. In our approach the test model is designed by the
testers, instead of being generated from a system model.

3. THE MBT/MBA FRAMEWORK
The architecture of the MBT/MDA framework we propose is
depicted in Figure 1. At the PIT level, we have identified two
important viewpoints: PITM (Platform Independent Test Model)
and PITGM (Platform Independent Test Generation Model).

Conceptual
Data Model

Test Model

Conforms

to
Composed of

Test

view

Test coverage

item
Test Case

Generation Model

Composed of

Executable Test
Case Model

Composed

of

T
ra

n
sfo

rm
a
tio

n

Test generation technology

Test Code

P
IT

M
P

IT
G

M

P
S

T
P

IT
Test coverage

itemTest coverage

itemTest coverage
item

Test

viewTest
view

Test selection criterion

Output
Database

Test
Database

User Input User Output

Inputs Outputs

Figure 1. Architecture of the MBT/MDA framework

9

The PITM level is focused on the definition of the testing
objectives, according to the system specification of the SUT.
Here, the test model is designed as a composition of one or more
important features of the SUT to be tested, called test views.
Related to the scope of testing database applications, the
conceptual data model of the database plays an important role, so
the test model must conform to it in order to specify the test views
correctly. If the conceptual data model is not explicitly stated (the
NoSQL databases are schema-optional), the tester prepares this
model as part of the testing process.

The PITGM level is centred on the definition of the test case
generation model that is formed by the specific items that must be
tested, which are called test coverage items. In the context of
MBT, the test generation model represents a model of the abstract
test cases. The mapping between the test model and the test
generation model is performed by transformations that are guided
by the test selection criterion chosen, which leads the test
coverage items. In this mapping, a test view can give rise to
several test coverage items. From a PITM, several PITGM can be
automatically derived by appropriate transformations.

The PST level contains the executable test case model, which is
obtained by means of transformations from the test case
generation model and depends on the specific graph database
management system used. These transformations are guided by
some test generation technology that concretizes the test inputs,
formed by the state of the database before the execution of the test
case (test database) and the values supplied by the user (user
input); and the expected outputs, formed by the state of the
database after the execution of the test case (output database) and
the values shown to the user (user output). Finally, the executable
test cases can be transformed into an executable test code.

An important benefit of the MDA paradigm consists in reaching a
high level of automation by defining transformations among
models. In our framework, the tester specifies the test model and,
after that, the processes of deriving the test case generation model,
the executable test cases and the test code can be carried out
automatically.

The elaboration of a test database with meaningful data is a
determining factor, as these data are transformed to produce the
test output and the test database has to represent the situations of
interest to be tested, so the SUT can exercise them. This paper is
focused on the definition of test views for unit testing, which are
specially tailored for managing the database of graph database
applications.

4. TEST VIEWS FOR GRAPH DATABASE

APPLICATIONS
Consider, for example, a database application (“illness risk”)
which determines the level of risk of suffering an illness
according to different factors such as the severity of previous
episodes suffered by the person (which is classified in three
levels), the existence of previous episodes of the illness in his/her
family, etc.. The conceptual data model of the database is depicted
in Figure 2.

Person Illness

Severity

- level

FATHER_OF

MOTHER_OF

SUFFERED_BY* *
origin

*

*

1

1 origin

origin

Figure 2. Conceptual data model of the “illness risk”

application

Some interesting features to test are situations in which: (a) a
person has only one mother; (b) a person can suffer several
episodes of the same illness with different severity levels; (c) an
illness can be suffered by several people of the same family.

Our approach allows the tester to define test views based on the
system specification, which indicate interesting nodes and
relationships of the test database to test the application behaviour.
Figure 3 depicts the test views that correspond to the
aforementioned features to test. The elements that compose a test
view are also identified:

• View node or vNode: a type of node of the database.
The vNode label indicates the class that represents the
vNode in the conceptual data model. A type of node can
be unique in a test view, generating only one vNode
(like the vNode “Illness”), or have several instances,
giving rise to several vNodes denoted by classi, (the
subscript represents the number of the instance of this
vNode). For example, the vNodes “Person1”, “Person2”
and “Person3” are three different instances of the same
type of node “Person”.

• View path or vPath: a directed path that relates two
vNodes according to a specific semantic derived from
the relationships of the conceptual data model, which is
indicated by the label vPath semantic. There are two
types of vPaths: allowed and not allowed, which specify
that a vPath can appear or cannot appear in a database,
respectively.

• Mock path: a not completely defined path that relates
two or more vNodes. The testing objective is not
focused on any specific path that relates these vNodes,
but it is focused on its existence.

• vPath constraint: a restriction over a group of vPaths,
which constraints whether each one can, cannot or must
appear at the same time in the database. There are three
types of vPath constraints: XOR (represented by “X”)
indicates that only one allowed vPath must appear in the
database; OR (represented by “O”) indicates that several
allowed vPaths can appear at the same time in the
database; AND (represented by “+”) indicates that all
allowed vPaths constrained must appear at the same
time in the database.

• vPath connector (connector, for short): joins a group of
vPaths that are restricted by the same vPath constraint.
A connector can join vPaths that start in the same
vNode or vPaths that end in the same vNode.

10

Person1 X

mother_of

Person2

Person3
mother_of

vPath (not allowed)

(a) a person has only one mother

Person1 O Illness

level:1

level:2

level:3

(b) a person suffers several episodes of the same illness

Illness

O

level:1

Person2

Person3

Person1

level:2

level:3

vPath (allowed)

vPath connector

vPath constraint

vPath semanticvNode label

vNode

mock

path

(c) an illness can be suffered by several people of the same family

Figure 3. Examples of test views

The test view of Figure 3(a) indicates that the vPath between
“Person2” and “Person1” must appear in the database, whereas the
vPath between “Person3” and “Person1” cannot appear. Figure
3(b) indicates several vPaths that represent different severity
levels of an illness. One or more of these vPaths can appear in the
database between an instance of “Person” and an instance of
“Illness”. Finally, the test view of Figure 3(c) indicates that three
different people have suffered an illness with different severity
levels (vPaths from “Illness” to “Person1”, “Person2” and
“Person3”). One or more of these vPaths can appear in the
database. The mock path indicates that there can be family
relationships between “Person1”, “Person2” and “Person3”, but
these relationships are not exactly defined.

After defining the test views, transformations guided by some test
selection criterion can derive automatically the test coverage
items. These test coverage items can be automatically mapped to
executable test cases by means of transformations guided by a test
generation technique.

Our approach allows the tester to define several types of test
views, however, due to the lack of space we only present three
examples.

5. CASE STUDY
To illustrate how our approach can be applied, a real-world
example of a graph database application, called “authorization and
access control” [29], has been used. This application represents
the business of an international communications services

company, which offers its customer organizations the ability of
self-service their accounts. Organization administrators can add
and remove services on behalf of their employees. To ensure that
resources are only seen and changed by the entitled users, a
complex access control system has been designed, considering
different types of permissions and hierarchy structures among
organizations. The conceptual data model of the database is
depicted in Figure 4.

Administrators are assigned to one or several groups, and these
groups have several permissions against the organizational
structure. Each organization can be the parent of several
organizations, with their own employees and accounts to manage.
The permissions defined among groups and organizations are: (1)
allowed_inherit allows administrators within the group to manage
the accounts of both the organization and its children; (2)
allowed_do_not_inherit allows the administrator with the group
to manage the organization, but not its children; (3) denied
forbids administrators with a group to manage the organization
and its children. The access control system also establishes a
permission precedence, because an administrator can be a member
of two groups within different permissions against the same
organizations. So, the permission denied takes precedence over
allowed_inherit, and allowed_do_not_inherit prevails over
denied.

The system specification defines three queries to find all
accessible accounts for an administrator (shown in Figure 5), to
determine whether an administrator has access to an account and
to find all administrators for an account.

Organization

Type

- type

CHILD_OF

PERMISSION* *
origin

* 0..1
Admin MEMBER_OF*

origin

Group*

origin

Account

WORKS_FOR

Employee

*

1
origin

HAS_ACCOUNT

1 *origin

Figure 4. Conceptual data model of the “authorization and access control” application

11

START admin=node:administrator(name={administratorName})

MATCH paths=(admin)-[:MEMBER_OF]->()-[:ALLOWED_INHERIT]->()

 <-[:CHILD_OF*0..3]-(company)<-[:WORKS_FOR]-(employee)

 -[:HAS_ACCOUNT]->(account)

WHERE NOT ((admin)-[:MEMBER_OF]->()-[:DENIED]->()<-[:CHILD_OF*0..3]-(company))

RETURN employee.name AS employee, account.name AS account

UNION

START admin=node:administrator(name={administratorName})

MATCH paths=(admin)-[:MEMBER_OF]->()-[:ALLOWED_DO_NOT_INHERIT]->()

 <-[:WORKS_FOR]-(employee)-[:HAS_ACCOUNT]->(account)

RETURN employee.name AS employee, account.name AS account

Figure 5. Cypher query for finding all accessible accounts for an administrator

First, we designed several test views, according to the system
specification. One of them can be seen in Figure 6: a group can
have different permissions against different organizations, which
have a hierarchical structure. The “void” permission indicates that
the group does not have an explicit permission against
“Organization4”. The objective of this test view is to test the
inheritance of the different types of permissions.

Group O

denied

allowed

_inherit

allowed_do
_not_inherit

void

Organization1

Organization2

Organization3

Organization4

Figure 6. Test view of the “authorization and access control”

application

Then, we transformed the test views into the test coverage items
using a script that implements a combinatorial technique based on
permutations without repetition. For example, for the test view of
Figure 6 the script carried out permutations without repetition
over the vNodes related by the mock path to generate different
hierarchical orders between them. As a result, 24 test coverage
items were generated automatically. Two of these test coverage
items are shown in Figure 7. Note that the mock paths are now
directed paths to indicate the particular hierarchical structure
represented by the test coverage item.

From the test coverage items, we generated the test database,
considering the specific graph database (Neo4j in our case [27]).

Group

allowed

_inherit

allowed_do

_not_inherit

void

Organization2

Organization4

Organization1
denied

Organization3

(a)

Group

allowed_do
_not_inherit

allowed
_inherit

void

Organization3

Organization4

Organization1
denied

Organization2

(b)

Figure 7. Test coverage items of the “authorization and access

control” application

Figure 8 shows the nodes and relationships that were introduced
into the test database to cover the test coverage items of Figure 7.
The nodes “G1”, “O1”, “O2”, “O3” and “O4” (and their
relationships) cover the test coverage item of Figure 7(a), while
the nodes “G1”, “O5”, “O6”, “O7” and “O8” (and their
relationships) cover the test coverage item of Figure 7(b). The
other nodes and relationships were used to conform to the
conceptual data model. Finally, we generated the test code that
was executed against the SUT using the languages Cypher and
Java. At present, the test database and the test code are generated
by hand, however both tasks will be automated in the future.

12

allowed
_inherit

allowed_do
_not_inherit

A1 G1

allowed_do_
not_inherit

allowed
_inherit

member_of

Administrator Group Organization Employee Account

denied

denied

child_of

E6

O3

O1

O2

O5

O6

E5

E3

E2

E1
works_for

E7

AC6

AC5

AC3

AC2

AC1
has_account

AC7O7

O4

O8 E8 AC8

E4 AC4

Figure 8. Extract of the test database of the “authorization and access control” application

The execution of the test cases, which take as input the test
database generated, reported that “A1” has access to the accounts
“AC1”, “AC2“, AC3”, “AC5”, “AC6” and “AC7”, but should
“A1” have access to the accounts “AC3”, “AC6” and “AC7”? We
do not know because the system specification does not indicate
the preference between the allowed_inherit and the
allowed_do_not_inherit permissions. So, the test cases detected a
fault. If the observed output is equal to the expected output, the
specification has a fault because it is incomplete. If the observed
output is not equal to the expected output, both the specification
and the implementation have a fault.

6. CONCLUSIONS AND FUTURE WORK
We have presented an approach to test graph database
applications. This approach defines a test model taking into
account the conceptual data model of the SUT and the system
specification. The test model is composed of several test views
that represent the important features of the SUT to be tested. To
automate the generation of test cases from the test model we have
proposed a framework that places MBT in the MDA context.

The results of the case study show that the test cases obtained
from the test model reported that an administrator had access to
some resources that could be forbidden (the system specification
is not complete). An incomplete specification can cause defects in
the applications, as developers could make erroneous assumptions
about what the system must do; the increase of costs, since new
code could be developed, and of course tested, when the omission
is detected; and even the dissatisfaction of the customers, as the
system does not meet their needs.

Future work includes several avenues. On the one hand, the
definition of test selection criteria that consider the characteristics
of the test views to derive the test coverage items and the
development of techniques to generate executable test cases for
graph database applications. Furthermore, the elaboration of the
test views could be partially automated to represent different
strategies and patterns of features that should be tested. At
present, the generation of test coverage items has been automated,

however other aspects can be automated, such as the
transformations between the other models. As part of future work,
we will define transformations between models that allow
automating the process and we will develop a tool implementing
the framework proposed.

7. ACKNOWLEDGMENTS
This work was supported by projects TIN2013-46928-C3-1-R,
funded by the Spanish Ministry of Science and Technology, and
GRUPIN14-007, funded by the Principality of Asturias (Spain)
and ERDF funds.

8. REFERENCES
[1] Alves, E.L.G., Machado, P.D.L., Ramalho, F. 2014.

Automatic generation of built-in contract test drivers.
Software and Systems Modelling, 13(3), 1141-1165.

[2] Barmpis, K., Kolovos, D.S. 2014. Evaluation of
Contemporary Graph Databases for Efficient Persistence of
Large-Scale Models. Journal of Object Technology, 13(2),
pp 3:1-26.

[3] Binnig, C., Kossmann, D., Lo, E. 2008. MultiRQP -
Generating test databases for the functional testing of OLTP
applications. In Proceedings of the 1st International

Workshop on Testing Database Systems.

[4] Blanco, R., Tuya, J., Seco, R.V. 2012. Test adequacy
evaluation for the user-database interaction: a specification-
based approach. In Proceedings of the 5th International

Conference on Software Testing, Verification and

Validation, pp. 71-80.

[5] Busch, M., Chaparadza, R., Dai, Z., Hoffmann, A., Lacmene,
L, Ngwangwen, T., Ndem, G., Ogawa, H., Serbanescu, D.,
Schieferdecker, I., Zander-Nowicka,J. 2006. Model

transformers for test generation from system models.
Technical report, Fraunhofer FOKUS,Germany and Hitachi
Central Research Laboratory Ltd., Japan.

13

[6] Ciccozzi, F., Cicchetti, A., Siljamäki, T, Kavadiya, J. 2010.
Automating test cases generation: from xtuml system models
to qml test models. In Proceedings of International

Workshop on Model-Based Methodologies for Pervasive and

Embedded Software, pp. 9–16.

[7] Chays, D., Deng, Y., Frankl, P.G., Dan, S., Vokolos, F.I.,
Weyuker, E.J. 2004. An AGENDA for testing relational
database applications. Software Testing, Verification and

Reliability, 14(1), 17-44.

[8] Dai, Z.R. 2004. Model-driven testing with UML 2.0. In
Proceedings of the Second European Workshop on Model

Driven Architecture, pp. 179-187.

[9] de la Riva, C., Suárez-Cabal, M.J., Tuya, J. 2010. Constraint-
based test database generation for SQL queries. In
Proceedings of the 5th International Workshop on

Automation of Software Test, pp. 67-74.

[10] Emmi, M., Majumdar, R., Sen, K. 2007. Dynamic Test input
generation of database applications. In Proceedings of the

International Symposium on Software Testing and Analysis,
pp. 151-162.

[11] Fujiwara, S., Munakata, K., Maeda, Y., Katayama, A.,
Uehara, T. 2011. Test data generation for web application
using a UML class diagram with OCL constraints.
Innovations in Systems and Software Engineering, 7(4), 275-
282.

[12] Gardikiotis, S.K., Malevris, N. 2009. A Two-folded Impact
Analysis of Schema Changes on Database Applications.
International Journal of Automation and Computing, 6(2)
109-123.

[13] Garg, D., Datta A. 2012. Test Case Priorization due to
Database Changes in Web Applications. In Proceedings of

the 5th International Conference on Software Testing,

Verification and Validation, pp. 726-730.

[14] Halfond, W.G.J., Orso, A. 2006. Command-form coverage
for testing database applications. In Proceedings of the 21st

IEEE/ACM International Conference on Automated

Software Engineering, pp. 69-80.

[15] Kapfhammer, G.M., Soffa, M.L. 2003. A family of test
adequacy criteria for database-driven applications. In
Proceedings of the 9th European Software Engineering

Conference held jointly with 11th ACM SIGSOFT Int’l

Symposium on the Foundations of Software Engineering, pp.
98-107.

[16] Kapfhammer, G.M., Soffa M.L. 2008. Database-aware test
coverage monitoring. In Proceedings of the 1st India

Software Engineering Conference, pp. 77-86

[17] Kapfhammer, G.M., McMinn, P., Wright, C.J. 2013. Search-
Based Testing of Relational Schema Integrity Constraints
Across Multiple Database Management Systems. In
Proceedings of the 6th International Conference on Software

Testing, Verification and Validation, pp. 31-40.

[18] Khalek, S.A., Elkarablieh, B., Laleye, Y.O., Khurshid, A.
2008. Query-aware test Generation using a relational
constraint solver. In Proceedings of the 23rd IEEE/ACM

International Conference on Automated Software

Engineering, pp. 238-247.

[19] Lamancha, B.P., Reales, P., García, I., M. Polo, Piattini, M.
2009. Automated Model-based Testing using the UML

Testing Profile and QVT. In Proceedings of the 6th

International Workshop on Model-Driven Engineering,

Verification and Validation, pp. 1-10.

[20] Lamancha, B.P, Reales P., Polo M., Caivano, D. 2011.
Model-driven testing: transformations from test models to
test code. In Proceedings of the 6th International Conference

on Evaluation of Novel Approaches to Software

Engineering, pp. 121-130.

[21] Leavitt, N. 2010. Will NoSQL databases live up to their
promise? IEEE Computer, 43(2) 12-14.

[22] Liu, Y., Li, Y., Wang, P. 2010. Design and implementation
of automatic generation of test cases based on model driven
architecture. In Proceedings of the 2nd International

Conference on Information Technology and Computer

Science, pp. 344-347.

[23] Lo, E., Binnig, C., Kossmann, D., Özsu, M.T., Hon, W.K.
2010. A framework for testing DBMS features. The VLDB

Journal, 19(2), pp. 203-230.

[24] Marcozzi, M., Vanhoof, W., Hainaut, J.L. 2013. A relational
symbolic execution algorithm for constraint-based testing of
database programs. In Proceedings of the 13th International

Working Conference on Source Code Analysis and

Manipulation, pp. 179-188.

[25] McMinn, P., Wright, C.J., Kapfhammer, G.M. 2015. An
Analysis of the Effectiveness of Different Coverage Criteria
for Testing Relational Database Schema Integrity
Constraints. Technical Report CS-15-01, University of
Sheffield.

[26] Moniruzzaman, A.B.M., Hossain, S.H. 2013. NoSQL
Database: New Era of Databases for Big data Analytics-
Classification, Characteristics and Comparison. International

Journal of Database Theory and Application, 6(4) 1-14.

[27] Neo4J, http://neo4j.com

[28] NoSQL databases, http://nosql-database.org

[29] Robinson, I., Webber, J., Eifrem, E. 2013. Graph databases.
O’Reilly.

[30] Schieferdecker, I. 2012. Model-based testing. IEEE Software

29, 14-18.

[31] Tuya, J., Suárez-Cabal M.J., de la Riva, C. 2006.
SQLMutation: a tool to generate mutants of SQL database
queries. In Proceedings of the Second Workshop on

Mutation Analysis.

[32] Tuya, T., Suárez-Cabal, M.J., de la Riva, C.2007. Mutating
database queries. Information and Software Technology,
49(4) 398-417.

[33] Tuya, T., Suárez-Cabal, M.J., de la Riva, C. 2010. Full
predicate coverage for testing SQL database queries.
Software Testing Verification and Reliability, 20(3) 237-288.

[34] Utting, M., Pretschner, A., Legeard, B. 2012. A taxonomy of
model-based testing approach. Software Testing, Verification

and Reliability, 22(5) 297-312.

[35] Willmor, D., Embury, S.M. 2005. Exploring test adequacy
for database systems. In Proceedings of the 3rd UK Software

Testing Research Group, pp. 123-133.

[36] Willmor, D., Embury, S.M. 2006. Testing the
implementation of business rules using intensional database

14

tests. In Proceedings of Testing: Academic & Industrial

Conference on Practice and Research Techniques, pp. 115-
126.

[37] Wright, C.J., Kapfhammer, G.M., McMinn, P. 2013.
Efficient Mutation Analysis Of Relational Database Structure
Using Mutant Schemata And Parallelisation. In Proceedings

of the 6th International Conference on Software Testing,

Verification and Validation Workshops, pp. 63-72.

[38] Zander, J., Dai, Z.R., Schieferdecker, I., Din, G. 2005. From
U2TP models to executable tests with TTCN-3 - an approach
to model driven testing. In Testing of Communicating

Systems. LNCS 3502, pp.289-303.

[39] Zhou, C., Frankl, P. 2011. JDAMA: Java Database
Application Mutation Analyzer. Software Testing,

Verification and Reliability, 21(3), 241-263.

15

